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Impact of Quantum Computing on IT Security—Overview

Goals of Cryptography within IT Security
◦ Confidentiality (A speaks in private with B)
◦ Authenticity (A knows it is B where data originates)
◦ Integrity (A can verify that the data is unmodified and complete)
◦ Non-repudiation (B cannot deny sending signed data)

Effects of Grover’s and Shor’s quantum algorithms in cryptanalysis
◦ Symmetric Ciphers (AES, . . .): security level halved by Grover’s algorithm;
∃c ∈ R ∀n ∈ N : O (cn) Grover−−−−→ O

(
c

n
2
)

= O
(√

cn
)
,

◦ Encryption (RSA, ECC) and signatures (RSA, (EC)DSA): broken by Shor’s algorithm;
∃c ∈ R ∀n ∈ N : O (cn) Shor−−→ O (nc).

Implementation and integration issues lead to delayed migration to post-quantum crypto.
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Computing on Encrypted Data Practice—Law Perspective

≈ 50 Years Data Protection Regulations: Timeline for the EU
1970 Hessian Data Protection Regulation privacy law (Hesse),
1986 Overhauled 2nd version for public authorities (in Germany),
1995 Adapt & blue-print natural person’s EU Data Protection Directive,
2016 Superseded by EU’s General Data Protection Regulation (GDPR),
2018 GDPR is enforceable since May 2018 granting basic protection,
2021 Prominent coverage of fines issued due to GDPR all over Europe.

Any ’free’ Cloud-service means user data is the product.
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Computing on Encrypted Data Theory—Theoretical Perspective
Let n ∈ N denote the security parameter. Typically > 80 bit post-quantum security level.

(Public-Key) Encryption Scheme S

Given an encryption (resp. decryption) function Encpk : M → C (resp. Decsk : C → M)
with secret-key–public-key pair (sk, pk) $← Gen(1n); we call it private-key, if sk = pk, and
require all algorithms to be efficiently computable (ppt).
For all plaintexts m ∈M, and all key-pairs (sk, pk) ∈ K we have

Pr[Decsk(Encpk(m)) = m] = 1− negl(n), holds with overwhelming probability (’w.o.p.’).

Evaluating a Function f on Encrypted Data
Let S = (Gen(1n), Enc(.), Dec(.)) be a (public-key) encryption scheme:

Eval(f, Encpk(m)) = c ∈ C, such that w.o.p. Decsk(c) = f(m) holds.
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Machine Learning as a Service (MLaaS)

User submits Enc (x) and recovers Enc (M (x)); the encrypted prediction.

COOPER

Alice predictive model M

x

M (x)

Private data protection?
GDPR compliant!

Enc (x)

Enc (M (x))

3 Privacy input & output data is encrypted (user has only key)
u Efficiency is a central practical issue

Goal of PhD-Thesis: FHE–DiNN — fast homomorphic evaluation of neural networks 3
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Recapitulation: Homomorphisms and Fully Homomorphic Encryption (FHE)

Remarkably, FHE can evaluate any function f on encrypted inputs c.

FHE means "∀f : f ◦ FHE.Encpk =̂ FHE.Encpk ◦ f"
Let (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) be an (IND-CPA–secure public-key) encryp-
tion scheme with compact ciphertexts C.
If for any computable function f ∈ F and all plaintexts m1, m2 ∈M,

(f ◦ FHE.Encpk)(m1, m2) =
f(c1,c2)=c︷ ︸︸ ︷

f([m1]pk, [m2]pk) !=
c′∈C︷ ︸︸ ︷

[f(m1, m2)]pk

= (FHE.Encpk ◦ f)(m1, m2),

holds with f(m1, m2) = m3 ∈M ⊆ C, then it is an FHE scheme.

Actually, w.o.p. FHE.Decsk(c) = FHE.Decsk(c′) ∈M must match!
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FHE — ’The Holy Grail of Cryptography’ [Mic10]

≈ 40 Years of FHE: Timeline
1978 Adleman, Dertouzos, and Rivest mention private homomorphisms
2009 Gentry’s theoretical breakthrough construction: 1st generation
2012 Brakerski, Gentry, and Vaikuntanathan (BGV)’s simpler 2nd gen.
2013 Gentry, Sahai, and Waters (GSW)’s efficient: 3rd generation
2016 Chillotti, Gama, Georgieva, and Izabachène (CGGI)’s efficient implementation: TFHE
2021 FHE schemes’ & applications’ practical breakthrough?
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Definitions: From LWE to TLWE and TGSW

LWE assumption (over the Torus)

Given a secret s $← {0, 1}n, it is hard to distinguish between (a, b), where a $← Tn and
b = 〈s, a〉+ e ∈ T, with e← χ, and (u, v) $← Tn+1.

To define polynomial and matrix generalizations, we set:
◦ B := {−1, 1}, B[X]/(XN + 1), polynomials of deg < N = 1024,
◦ T := R/Z, with torus-polynomials TN [X] := T[X]/(XN + 1),
◦ TN [X]k := T[X]k/(XN + 1), tuples of torus-polynomials, k ≥ 1.

TLWE/TGSW Sample

Let s $← B[X]k/(XN + 1), a vector of k ≥ 1 polynomials, and message m ∈ TN [X]k.
(a, b) ∈ TN [X]k+1 is a TLWE Sample, if a $← TN [X]k, b = a · s + m + e, with Gaussian-
noise e← χα, α > 0 at a · s + m. A TGSW Sample is a list of ℓ ≥ 1 TLWE Samples or a
(k + 1× ℓ)-matrix.
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Deep Feed-Forward Neural Network with nI : n1 : · · · : nd : nO–topology
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Close-up on Neuron

Computation for every neuron:

x1

x2

...
...

w1

w2
yΣ φ

xi, wi, y ∈ R

y = φ

(∑
i

wi xi

)
,

where φ is an activation function.
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FHE-friendly Discretized Neural Networks

Goal: FHE-friendly model of neural network: xi, wi, y ∈ Z.

Definition (DiNN)
A neural network whose layers have inputs in {−I, . . . , I} ⊆ Z, weights in {−W, . . . , W} ⊆
Z, for I, W, O ∈ N, and each neuron’s activation function maps the weighted sum to integer
values in {−O, . . . , O} ⊆ Z.

1. Not restrictive as it seems as, e.g., binarized NNs perform well;

2. trade-off between size and performance;

3. conversion is straight-forward.

Main impediment: non-linear functions
Applying the non-linear activation function after linear layer.
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Main Idea: Activation While Bootstrapping FHE

Combine necessary refreshing with desirable activation function:
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φ.(z)

φ0(z) = sign(z)
φ1(z) = tanh(z)
φ2(z) = 2

1+e−z − 1
2

Figure: Several neural network activation functions and our choice φ0.

Enc (z)→ Enc (f (z))→ . . .
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Close-up on a single neuron: two steps

Enc (x1)

Enc (x2)

...
...

w1

w2
Enc (f (w, x))Σ

Each neuron computes Enc (f (w, x)) , e.g. Enc (sign (〈w, x〉)):
1. Compute inner product

∑
i wiEnc (xi) (linearly homomorphic)

2. Bootstrap encryption of activated result (fully homomorphic)
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Torus Fully Homomorphic Encryption (TFHE)

We use Torus Fully Homomorphic Encryption framework on T := R/Z.

Security Assumption underlying TFHE and FHE–DiNN
Hardness of Learning with Errors (LWE) on T:

(a, 〈s, a〉+ e mod 1) c≈ (a, u) ∈ Tn+1,

where e← χα, s←$ Bn, a, u←$ Tn with error parameter α.

We also use other torus-based schemes allowing performance increase:
◦ TLWE (for encrypting polynomials T[X])
◦ TGSW (’matrix TLWE’; roughly equivalent to GSW construction)
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Novel TFHE-Adaptations for Fast DiNN Inference

1. Combining implementations of Bootstrapping and Activation
2. Reducing bandwidth usage by Packing ciphertexts
3. Moving boostrapping operation order, i.e., when to do a Keyswitch
4. Reparametrizing message space between neural network layers
5. Optimizing alternative implementation of BlindRotate

Goal Packing: encrypt polynomial T[X] instead of T scalars:
x(X) =

∑
i xi Xi ∈ T[X] a ciphertext.

Idea Redefine and pack (clear) weights in hidden layers: w(X) :=
∑

i wiX
−i.

Effect Constant term of x(X) · w(X) ∈ T[X] is
∑

i wi xi ∈ T.

3. Main Idea: Activation During FHE Bootstrapping 14/25



Novel TFHE-Adaptations for Fast DiNN Inference

1. Combining implementations of Bootstrapping and Activation
2. Reducing bandwidth usage by Packing ciphertexts
3. Moving boostrapping operation order, i.e., when to do a Keyswitch
4. Reparametrizing message space between neural network layers
5. Optimizing alternative implementation of BlindRotate

Goal Reduce LWE dimension, ensuring security level, to optimize memory, efficiency,
bootstrapping–key’s size, final noise, and the number of expensive external
products.

Idea Bootstrap = SampleExtract ◦ BlindRotate ◦ KeySwitch
Effect Less noise; size n < N is used only for bootstrapping
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Novel TFHE-Adaptations for Fast DiNN Inference

1. Combining implementations of Bootstrapping and Activation
2. Reducing bandwidth usage by Packing ciphertexts
3. Moving boostrapping operation order, i.e., when to do a Keyswitch
4. Reparametrizing message space between neural network layers
5. Optimizing alternative implementation of BlindRotate

Goal Dynamically change the message space to reduce errors.
Idea For Iℓ, an upper bound on the sum in layer ℓ + 1, define:

testvector(X) = t(X) := 1
2Iℓ + 1

N−1∑
i=0

Xi.

Effect Less slices, hence less inaccurate decisions when rounding.
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Novel TFHE-Adaptations for Fast DiNN Inference

1. Combining implementations of Bootstrapping and Activation
2. Reducing bandwidth usage by Packing ciphertexts
3. Moving boostrapping operation order, i.e., when to do a Keyswitch
4. Reparametrizing message space between neural network layers
5. Optimizing alternative implementation of BlindRotate

We unfold the loop for computing X〈s,a〉 in BlindRotate.
Goal Trade-off off-line pre-processing for on-line speed.

Idea Windowed processing & using algebraic keys-relations.

Effect Larger bootstrapping key traded for faster execution.
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Extending the TFHE Framework for Fast Bootstrapping

...with anti-periodic f : WI →WO, mapping input slots to outputs:

f0

f1

f2

f−2

f−1

...
fI

f−I

. . .

fO, . . . , f1, f0

+1

f−1, . . . , f−O

−1
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Moving the bootstrapping operation order

Bootstrap
Bootstrapping-to-sign comprises 3 algorithms, given bk, ksk, t(X), and an
N -dim. LWE sample c = (a, b) = LWEs,α(m) of message m under key s:

BlindRotate: (TGSW)n × (n− LWE)× TLWE → TLWE
Rotates the wheel, i.e. computes Xb−〈s,a〉 · t(X).

SampleExtract: TLWE → N -LWE
Extracts N -LWE sample µ0 of message µ ∈ TN [X].

KeySwitch: (n− LWE)n × N -LWE → n-LWE
Returns a n-LWE sample under s′ of b− 〈s, a〉.

Reversing the two LWE schemes of sizes n < N improves run-time.

3. Main Idea: Activation During FHE Bootstrapping 16/25



Fast Fourier Transform (FFT)

Think of x = Encpk(p) ∈ T as an TLWE encrypted pixel (or a whole picture packed into one
input ciphertext x = Encpk

(∑
i piX

i
)
∈ T[X]), and w as public (or company) known

weights per neuron.
We pre-compute the Fourier transform ŵ = F2N (w) of w off-line.

Convolution and Efficient (FFT) Multiplication

Let N, I ∈ N be powers of 2, for instance N = 1024, I = 232. The input polynomial
x ∈ TN [X] and the weights are embedded in the first components of vectors as wj ∈ Z, xj ∈
WI ⊆ T, 0 ≤ j < N , then using the fast Fourier transform allows efficient computation of
the multisum:

(FN (x))m = (FN
2

((x2j)0≤j< N
2

)) m
2

+ ωm
N
2
· (FN

2
((x2j+1)0≤j< N

2
)) m

2 +1,

FN (x ∗w) = FN (x) · FN (w) ∈ C,

(x ∗w) ≡ F−1
N (FN (x) · FN (w)) mod 1.
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Speeding-up the Processing: FFT Data-Flow x̂ = F2N (x)
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FFT’s divide-and-conquer strategy for power-of-2 lengths; 2N = 16.
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Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of digit recognition.

7

Dataset: MNIST (60 000 images in training set + 10 000 in test set).
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Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of blind digit recognition.

7

Dataset: MNIST (60 000 images in training set + 10 000 in test set).
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FHE–DiNN: Overview [BMMP18]

ServerClient

COOPER

Alice holds sk

Enc(7)
Enc

(∑
i piX

i
) homomorphically

evaluating

AI prediction model M
{Enc(Si)}i Scoresi = 7 argmaxi
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FHE–DiNN: Input Image and 784:100:10–Neural Network

p1 p28

p784

1
p1

x1 = Enc(p1)

2
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x2 = Enc(p2)

3
p3
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...
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1

2
2...
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...
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S0

S1

S9

x1

x2

...
...

w1
w2

yΣi
y = φ (∑i wi xi), y∈ [−O, . . . , O]

xi∈ [−I, . . . , I], and wi ∈ [−W, . . . W ].

Hidden Neuron (zoomed)
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FHE–DiNN: Algorithmic Overview [BMMP18]

Client Server

COOPER

Alice

TLWEN

Encpk
(∑

i piX
i
)

100 TLWEN

·
∑

i wiX
−i

100 N -LWE
Extract

100 n-LWE
KeySwitch

100 N -LWE
BootstrapToSign

10 N -LWE
Scores

10 scores
Decsk

7 argmax
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FHE–DiNN: Evaluation Formula of our 784:100:10–network
We assume a neural network trained on Dtrain = {(x(i), L(i))i}.
MFHE–DiNN models a weighted recomposition of a TLWE encryption c0;

TN [X]k −→ (TN [X]k)10

c0 7→ c⃗2 =
∑100

ℓ2=1

φ1

 784∑
ℓ1=1

(c0)ℓ1 · (ŵ0→1)ℓ1


︸ ︷︷ ︸

c⃗1


ℓ2

· (ŵ1→2)ℓ2 .

The homomorphic evaluation yields 10 samples −→cO as output, encrypting the perceptrons’
predicted label likelihoods of an encrypted input digit cI .
Label L = argmaxi (Decsk (−→cO))i is how the model sees the input’s
depicted digit:L =MFHE–DiNN (cI), with Decsk (cI) ≈ x(I) ∈ (Dtrain)x.

Main Result of the PhD-Thesis—Scalability
The analysis shows how to bootstrap the most expensive layer, then repeat for arbitrary
many hidden neurons arranged in various layers.

4. Experiments: Digit Classification with FHE–DiNN 23/25



FHE–DiNN Experiments: Practical Performance Neural Networks

Performance metrics on (clear) inputs x:
Original NN DiNN + hard_sigmoid DiNN + sign

FHE–DiNN 30 94.76% 93.76% (-1 %) 93.55% (-1.21%)

FHE–DiNN 100 96.75% 96.62% (-0.13%) 96.43% (-0.32%)

Performance metrics on (encrypted) inputs Encpk (x):
Acc. Disagreements Total wrong BS when dis. Time

30 93.71% 273 (105–121) 3 383/300 000 196/273 0.515 s

100 96.26% 127 (61–44) 9 088/1 000 000 105/127 1.679 s

30 w 93.46% 270 (119–110) 2 912/300 000 164/270 0.491 s

100 w 96.35 % 150 (66–58) 7 452/1 000 000 99/150 1.640 s

window size w = 2

4. Experiments: Digit Classification with FHE–DiNN 24/25



Performance Comparison with Microsoft Cryptonets [DGBL+16]

Overall Network per Image

nH Accuracy Eval [s] |c| [B] Enc [s] Dec [s]

Cryptonets 945 98.95 % 570 586 M 122 5

Cryptonets⋆ 945 98.95 % 0.07 73.3 k 0.015 0.000 6

FHE–DiNN30 30 93.71 % 0.49 ≈ 8.2 k 0.000 168 0.000 010 6

FHE–DiNN100 100 96.35 % 1.64 ≈ 8.2 k 0.000 168 0.000 010 6

Cryptonets⋆ is amortized per image (accumulating 8192 inferences)

Experimental Results
Timing/Image on Intel Core i7-4720HQ CPU @ 2.60GHz: 1.64 [sec].
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Practical homomorphic encryption and cryptanalysis.
Matthias Minihold. PhD Thesis. Bochum, 2019.
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/files/6510/diss.pdf
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