From

HOMOMORPHIC ENCRYPTION

to Privacy-Preserving Image Classification in the Cloud

Dr. Matthias Minihold » 11.05.2021
Virtual @ Cryptography department of Simula UiB, Bergen

HOMOMORPHIC ENCRYPT]QN
Overview

1: Quantum Computing Threatens IT Infrastructure

2: Privacy-Preserving Predictions in the Cloud
Law Perspective

Technical Perspective

Machine Learning as a Service (MLaaS)

Recapitulation: Homomorphisms and FHE

Machine Learning & Neural Network Basics

FHE-friendly Discretized Neural Networks (DiNNs)
3: Experiments - Digit Classification with FHE-DiIiNN

MNIST Digit Recognition & Classification

Impact of Quantum Computing on IT Security—QOverview

Goals of Cryptography within IT Security

Effects of Grover’s and Shor’s quantum algorithms in cryptanalysis

Implementation and integration issues lead to delayed migration to post-quantum crypto.

Quantum Computing Threatens IT astructure

Computing on Encrypted Data Practice—Law Perspective

~ 50 Years Data Protection Regulations: Timeline for the EU

Any 'free’ Cloud-service means user data is the product.

Computing on Encrypted Data Theory—Theoretical Perspective

Let n € N denote the security parameter. Typically > 80 bit post-quantum security level.

(Public-Key) Encryption Scheme S

Given an encryption (resp. decryption) function Encpx : M — C (resp. Decg : C — M)
with secret-key—public-key pair (sk, pk) < Gen(1"); we call it private-key, if sk = pk, and
require all algorithms to be efficiently computable (PPT).

For all plaintexts m € M, and all key-pairs (sk, pk) € K we have

PriDecq (Ency(m)) = m| = 1 —negl(n), holds with overwhelming probability ('w.o.p.’).

Evaluating a Function f on Encrypted Data
Let S = (Gen(1™),Enc(.), Dec(.)) be a (public-key) encryption scheme:

Eval(f, Encoi(m)) = ¢ € C, such that w.o.p. Decg(c) = f(m) holds.

Machine Learning as a Service (MLaaS)

User submits and recovers 2 prediction.

E

[=]

Alice predictive model M

v Privacy input & output data is (user has only key)

Efficiency is a central practical issue

Goal of PhD-Thesis: FHE-DiNN — fast homomorphic evaluation of neural networks v/

Recapitulation: Homomorphisms and Fully Homomorphic Encryption (FHE)

Remarkably, can evaluate f C.

FHE means "Vf : foFHE.Encox = FHE.Ency o f"

Let (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) be an (IND-CPA-secure public-key) encryp-
tion scheme with compact ciphertexts C.

If for any computable function f € F and all plaintexts m, ms € M,

fler,ea)=c -
(f o FHE Ency) (ma, ma) = F([ma ok, [malpk) = [(ma, ma)]k
— (FHE.EnCpk o f)(mla m2)a

holds with f(my, mg) = mg € M C C, then it is an FHE scheme.

Actually, w.o.p. FHE.Decg(c) = FHE.Decg (') € M must match!

FHE — 'The Holy Grail of Cryptography’ [Mic10]

=~ 40 Years of FHE: Timeline

Definitions: From LWE to TLWE and TGSW

LWE assumption (over the Torus)

Given a secret s < {0,1}", it is hard to distinguish between (a,b), where a & T” and
b= (s,a) +eeT, with e « x, and (u,v) & T

To define polynomial and matrix generalizations, we set:
o B:={-1,1}, B[X]/(X¥ + 1), polynomials of deg <
o T :=R/Z, with torus-polynomials Tx[X] := T[X]/(XY + 1),
o Tn[X]* := T[X]*/(XY + 1), tuples of torus-polynomials,

TLWE/TGSW Sample

Let s & B[X]*/(XN + 1), a vector of k > 1 polynomials, and message m € Ty[X]*.
(a,b) € Ty[X])*! is a TLWE Sample, if a & Tn[X]*, b= a-s + m + e, with Gaussian-
noise € < Yo, > 0 at a-s+ m. A TGSW Sample is a list of £ > 1 TLWE Samples or a
(k + 1 x £)-matrix.

Deep Feed-Forward Neural Network with nz : 7 : - - - : ng : no—topology

Input Hidden Output
Iayer i/ Iayers He layer O

f(l)

Close-up on Neuron

Computation for every neuron:

T, Wi, Y € R

where ¢ is an activation function.

FHE-friendly Discretized Neural Networks

Goal: FHE-friendly model of neural network: x;, w;,y € Z.

Definition (DiNN)
A neural network whose layers have inputs in {—1I,...,1} C Z, weights in {-W,... , W} C
Z, for I, W, O € N, and each neuron's activation function maps the weighted sum to integer

values in {—0O,...,0} CZ.

1. Not restrictive as it seems as, e.g., binarized NNs perform well;

2. trade-off between size and performance;

3. conversion is straight-forward.

Main impediment: non-linear functions

Applying the non-linear activation function after linear layer.

Main Idea: Activation While Bootstrapping FHE

Combine necessary refreshing with desirable activation function:

Figure: Several neural network activation functions and our choice .

Enc(z) — Enc(f (2)) — ...

Close-up on a single neuron: two steps

Enc (f (w,z))
o

Each neuron computes Enc (f (w,x)), e.g. Enc (sign ((w, z))):
1. Compute inner product Y, w;Enc (z;) (linearly homomorphic)

2. Bootstrap encryption of activated result (fully homomorphic)

Torus Fully Homomorphic Encryption (TFHE)

We use Torus Fully Homomorphic Encryption framework on T := R/Z.

Security Assumption underlying TFHE and FHE-DiNN
Hardness of Learning with Errors (LWE) on T:

(a, (s,a)+e mod1) = (a, u) € T"",

where e < xq, s+sB", a,ussT" with error parameter a.

We also use other torus-based schemes allowing performance increase:
o TLWE (for encrypting polynomials T[X])
o TGSW ('matrix TLWE'; roughly equivalent to GSW construction)

Novel TFHE-Adaptations for Fast DiNN Inference

. Combining implementations of Bootstrapping and Activation

. Reducing bandwidth usage by Packing ciphertexts

. Moving boostrapping operation order, i.e., when to do a Keyswitch
. Reparametrizing message space between neural network layers

. Optimizing alternative implementation of BlindRotate

Goal Packing: encrypt polynomial T[X] instead of T scalars:

z(X) =3, z; X* € T[X] a ciphertext.
Idea Redefine and pack (clear) weights in hidden layers: w(X) := >, w; X °.
Effect Constant term of z(X) - w(X) € T[X] is >, w; z; € T.

Novel TFHE-Adaptations for Fast DiNN Inference

. Combining implementations of Bootstrapping and Activation

. Reducing bandwidth usage by Packing ciphertexts

. Moving boostrapping operation order, i.e., when to do a Keyswitch
. Reparametrizing message space between neural network layers

. Optimizing alternative implementation of BlindRotate

Goal Reduce LWE dimension, ensuring security level, to optimize memory, efficiency,

bootstrapping—key's size, final noise, and the number of expensive external
products.

Idea Bootstrap = SampleExtract o BlindRotate o KeySwitch

Effect Less noise; size n < I is used only for bootstrapping

Novel TFHE-Adaptations for Fast DiNN Inference

. Combining implementations of Bootstrapping and Activation

. Reducing bandwidth usage by Packing ciphertexts

. Moving boostrapping operation order, i.e., when to do a Keyswitch
. Reparametrizing message space between neural network layers

. Optimizing alternative implementation of BlindRotate

Goal Dynamically change the message space to reduce errors.

Idea For Iy, an upper bound on the sum in layer £ + 1, define:

1 N-1

testvector(X) = t(X) := Z Pt
QIg 4L Tl =0

Effect Less slices, hence less inaccurate decisions when rounding.

Novel TFHE-Adaptations for Fast DiNN Inference

. Combining implementations of Bootstrapping and Activation

. Reducing bandwidth usage by Packing ciphertexts

. Moving boostrapping operation order, i.e., when to do a Keyswitch
. Reparametrizing message space between neural network layers

. Optimizing alternative implementation of BlindRotate

unfold the loop for computing X 2 in BlindRotate.

Goal Trade-off off-line pre-processing for on-line speed.
Idea Windowed processing & using algebraic keys-relations.

Effect Larger bootstrapping key traded for faster execution.

-

Extending the TFHE Framework for Fast Bootstrapping

...with anti-periodic f : W; — W, mapping input slots to outputs:

fO7"'7f17f0

Moving the bootstrapping operation order

Bootstrap

Bootstrapping-to-sign comprises 3 algorithms, given bk, ksk, ¢(X), and an
N-dim. LWE sample c = (a,b) = LWEg ,(m) of message m under key s:

BlindRotate: (TGSW)™ x (n — LWE)x TLWE — TLWE

Rotates the wheel, i.e. computes Xt~ (52) . ¢(X).

SampleExtract: TLWE — N-LWE
Extracts N-LWE sample iy of message i € Ty [X].

KeySwitch: (n — LWE)" x N-LWE — n-LWE
Returns a n-LWE sample under s’ of b — (s, a).

Reversing the two LWE schemes of sizes n < N improves run-time.

Fast Fourier Transform (FFT)
Think of « = Encpk(p) € T as an TLWE encrypted pixel (or a whole picture packed into one
input ciphertext « = Encpk (32, piX?) € T[X]), and w as public (or company) known

weights per neuron.
We pre-compute the Fourier transform of w off-line.

Convolution and Efficient (FFT) Multiplication

Let N,I € N be powers of 2, for instance N = 1024,1 = 232. The input polynomial
x € Tn[X] and the weights are embedded in the first components of vectors as w; € Z, x; €
Wr; C T,0 <j < N, then using the fast Fourier transform allows efficient computation of

the multisum:

(FN())m = (Fa ((x2j)o<jer))m + Wi - (Fy (X2j+1)ocjc ¥)) 2415

2 2

Fn(xxw) = Fn(x) - Fy(w) € C,
(x *w) = Fy (Fa(x) - Fy(w)) mod 1.

Speeding-up the Processing: FFT Data-Flow x = Fan (%)

(0]

o 0-0 0-0
“i1e wg wa

) 8) 8) 8
N

8] 8 8 B K
= oo = N
S o)

)
29
Z5

8) 8 8 8 8
4l - W =
ot - w

-

Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of digit recognition.

Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of blind digit recognition.

FHE-DiNN: Overview [BMMP18]

Client Server

homomorphically
evaluating

‘W {EnC(AS'Z‘)}[

Scores Al prediction model M

FHE-DiIiNN: Input Image and 784:100:10—Neural Network

P1

y=¢(Ziw ;) ye [-0,...,0]
T, L], and Wi S =W, AW,

Hidden Neuron (zoomed)

-

FHE-DiNN: Algorithmic Overview [BMMP18]

== Ency (5, piX°
Fl ()TLWEN

D% w; X

100 TLWE N

f |

F

Alice

Extract}
100 N-LWE
KeySwitch l
100 n-LWE
Bootstrap ToSign l
100 N-LWE
Scoresl
10 N-LWE

argmax 10 scores

FHE-DiINN: Evaluation Formula of our 784:100:10—network

We assume a neural network trained on Dyain = {(x®, L(®);}.

models a weighted recomposition of a TLWE encryption cy;
Twy[X]* — (Tn[X]5)!°

784 e
cor S =02 L1 | D (co)e - (Wos1)e : (W1—>2)€2~

Pr—1

& A

The homomorphic evaluation yields 10 samples o as output, encrypting the perceptrons’
predicted label likelihoods of an encrypted input digit cz.

Label L = argmax; (Decg (@))l is how the model sees the input’s
depicted digit:L = MFHE_DINN (CI), with Decg, (CI) ~ x@) & (Dtrain)x-

Main Result of the PhD-Thesis—Scalability

The analysis shows how to bootstrap the most expensive layer, then repeat for arbitrary

many neurons arranged in various layers.

-

FHE-DiNN Experiments: Practical Performance Neural Networks

Performance metrics on (clear) inputs :
Original NN DiNN + hard_sigmoid DiNN + sign
FHE-DiNN 30 94.76% 93.76% (-1 %) 93.55% (-1.21%)

Performance metrics on () inputs

Acc. Disagreements Total wrong BS when dis. Time

30 93.71% 273 (105-121) 3383/300000 196/273 0.515s

30 w 93.46% 270 (119-110) 2912/300 000 164/270 0.491 s

window size w = 2

Performance Comparison with Microsoft Cryptonets [DGBL116]

Overall Network per Image
ny Accuracy Eval [s] |c| [B] Enc [s] Dec [s]
Cryptonets 945 98.95% 570 586 M 122 5

FHE-DiNN30 30 93.71 % 0.49 ~ 82k 0.000168 0.0000106

Cryptonets™ is amortized per image (accumulating 8192 inferences
A

Experimental Results

H[IMUMU“""'C ENCRYPT"]N

Reference

Practical homomorphic encryption and cryptanalysis.
Matthias Minihold. PhD Thesis. Bochum, 2019.
https:/hss-opus.ub.ruhr-uni-bochum.de/opus4/files/6510/diss.pdf

Questions?

