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Practical FHE.

▶ Set out in search for the holy grail: Practical FHE!

▶ Instead of looking for speed-ups of theoretic, asymptotic bounds
of the best algorithms, we consider one example where a new FHE
scheme can be applied in the cloud setting.

▶ Secondment at CryptoExperts (CRX).
▶ Joint work (currently in submission) by:

Florian.Bourse@ens.fr

Michele.Minelli@ens.fr

Matthias.Minihold@rub.de

Pascal.Paillier@cryptoexperts.com
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MNIST

▶ MNIST database: 60 000 training and 10 000 testing images,
▶ 28× 28 pixels in 8 [bit] gray-scale.

preprocessing

Figure: Preprocessing one MNIST’s test set images.
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Discretized Neural Networks are suited for FHE.
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Figure: A Deep DiNN.
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Close-up on a single neuron.
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Figure: Evaluation of a single neuron. The output value is y = sign(⟨w⃗†, x⃗⟩),
where w†

i are the preprocessed (clear or encrypted) weights associated to the
incoming wires and xi are the corresponding (clear or encrypted) input values.
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Neural Network activation functions.
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Figure: Several neural network activation functions and our choice φ0.

▶ FHE encrypted inputs and weights trained on clear data,
▶ Our DiNN has a single hidden layer of 30 neurons,
▶ Experiments with clear vs. encrypted inputs and clear weights.
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Homomorphic Evaluation of Deep Discretized NNs.
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Figure: Running an experiment on our neural network with 529:30:10–
topology. Classifies the depicted shape (without leaking privacy of the input
data), and outputs the (encrypted) scores Si assigned to each digit. The
highest score is compared to the known label evaluating our success.
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Results: It’s a seven!

▶ With LWE dimension n = 700 and Gaussian noise parameter
σ = 2−30, we aim for a security level of roughly 80 [bit].

▶ Homomorphic evaluation of our DiNN takes 0.88 [sec/classification].
▶ DiNN achieves 90.03% accuracy (vs. 90.82% on clear inputs).
▶ Our implementation requires about 28 [ms/bootstrapping] on a

regular CPU (single core of Intel Core i7-4720HQ CPU @ 2.60GHz.)

Bootstrapping after hidden layer ensures low noise level
Encryption (⟨w, x⟩)→ Encryption (sign (⟨w, x⟩)) with “fresh” noise.

scale-invariance allows computing on encrypted data over many layers.
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TLWE – Unified treatment of (Ring-)LWE

LWE assumption (over the Torus)
Given a secret s $← {0, 1}n, it is hard to distinguish between (a, b),
where a $← Tn and b = ⟨s, a⟩+e ∈ T, with e ← χ, and (u, v) $← Tn+1.

Extend the TFHE scheme of Chilotti et al. [CGGI16]

▶ Trained network weights are available in clear,
▶ Evaluate the multisum using homomorphic additions,
▶ Tailored Bootstrapping mechanism,
▶ Careful choice of:

1. Message space (accommodates encryption scheme’s largest results),
2. Noise level (control growth to ensure correctness).
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Evaluating the multisum

▶ Given a task, throw neural network, choosing B = maxw ∥w∥1,

▶ Given a message µ ∈ [−B, B] ⊆ N,
▶ Split the torus into 2B + 2 “slices”.

Our Extended LWE-based encryption scheme

▶ s = Setup (λ) samples s $← Tn, n = n (λ);
▶ (a, b) = Enc (s, µ) with a $← Tn, b = ⟨s, a⟩+ e + µ

2B+2 , e ← χ;
▶ Dec (s, (a, b)) returns ⌊(b − ⟨s, a⟩) · (2B + 2)⌉ – correct w.o.p.

Our Homomorphism (Fixing secret key s)
For c1 = (a1, b1)← Enc (s, µ1), c2 = (a2, b2)← Enc (s, µ2), w ∈ Z:

Dec (s, (a1 + w · a2, b1 + w · b2)) = µ1 + w · µ2.
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Evaluating the multisum
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Bootstrapping the multisum

Consider the torus R/Z =: T = (T, +, ∗):

-4
-3 -2

-1

0

1
23

4
+1

−1

Figure: On the left, discretize torus elements onto the wheel (the 2N dots
on it) by rounding to the closest dot. Each slice corresponds to one of
the possible results of the multisum operation (the colored slice represents
the forbidden zone). On the right, final result of the bootstrapping: each
dot of the top (resp. bottom) part of the wheel is mapped to +1 and −1,
respectively.
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Open Questions

▶ Paralellism across neural network should be straight-forward,

▶ better neural network (look-up hacky tricks in the literature),
▶ Look at speed-ups due to Lagrange representation & FFT-techniques,
▶ Optimization of cryptographic algorithms: Batched bootstrapping
▶ generalization to 2-D torus R2/Z2 =: T2 = (T2, +, ∗)?

Figure: 2D Torus.
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Learning with Errors

Cryptanalysis of computationally hard, underlying problems, i.e. assess
algorithmic approaches to solve average- and worst-case instances.

Promising to use (side-channel) information, parallelization and fplll,
then shift and balance workload to enumeration in a clever way to
break lattice challenges or post-quantum candidates.

Best current (primal) attack: BDD
First LLL/BKZ-reduction of the basis matrix, then enumerate points.
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Learning with Errors (LWE) Problem

Given 3-parameters and A ∈ Zm×n
q , t = A · s + e mod q, find: s.

Dimension n, modulus q, and error-bound ∥e∥ depend on sec-level λ.

Current Best Asymptotic Complexity of Attacking LWE.
Let q = nα, ∥e∥ = nβ ∈ O (poly(n)):

TLWE = 2cLWE·n· log n
log(q/∥e∥) ,

with cLWE a function of cBKZ and poly(n)- or 2n-space requirements.
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LWE in Theory / Practice

Attacking LWE In Practice Step 1

0⃗

b1

b2

Zn

L(B)

0⃗
b′1

b′2

Zn
L(B′)

fplll’s LLL
Reduction

Figure: Step 1: Find a ‘good’ basis for lattice Λq(A), i.e. using fplll.

Attacking LWE In Practice Step 2
Enumerate all points within radius ∥e∥ relative to t.
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QUESTIONS?

Thank you for your attention!
This research has received funding from the European Union’s Horizon 2020 research and innovation
programme Marie Skłodowska-Curie ITN ECRYPT-NET (Project Reference 643161).
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