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We define Goppa codes over a general alphabet I, and present
decoding advantages in the binary case, because of Patterson’s
algorithm and the larger minimum distance between codewords.

Definition

Let G(z) € Fgm[z] be a Goppa polynomial of degree t := deg G(z)
and the support L = {a1,az,...,a,} C Fgm , such that
G(«) # 0, for all @ € L. The Goppa code (L, G) is defined by:

1

n
ML, G):= {c e Fy | Z z—CIa- =0 mod G(z)}.
i=1
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Linear Codes: Goppa Codes

Let G(z) =Y i_,&iz' with gi € Fgm, gt # 0 be the Goppa
polynomial and let the support be L = {a1, az,...,an}.
Then the resulting Goppa code T'(L, G) is a linear code with
parameters [n,k > n— mt,d > t + 1] over F,.

Theorem

Given a Goppa polynomial G(z) over Fy of degree t := deg G(z).
@ If G has no multiple zeros and
o the lowest degree perfect square G(z) that is divisible by G(z)
is G(z) = G(2)?,
then the Goppa code (L, G) has minimum distance d > 2t + 1.
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Cryptography: McEliece PKS

Algorithm 1: McEliece key generation

Input : (k X n) generator matrix G, error correcting capability t
Output: public key (G', t), private key (S, G, P)

Choose a (n x n) permutation matrix P
Choose a regular binary (k x k)—matrix S
Compute (k x n) matrix G’ = SGP

Algorithm 2: McEliece encryption

Input : message m, public key (G’, t) and thus implicitly n, k
Output: encrypted message ¢

Compute ¢’ = mG’

Randomly generate a vector z € F7,

with non-zero entries at < t positions
Compute ¢ = ¢’ + z, the cipher text block
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Cryptography: McEliece PKS

Algorithm 3: McEliece decryption

Input : encrypted message block c, private key (S, G, P)
Output: message m

Compute ¢ = cP 71

The decoding algorithm of the code C corrects t errors. T — m.
Compute m = mS~!, the clear text message block.

// Precompute the matrices P~! and S~! once.
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Example of code-based PKS: n=8 m=3,qg = 2.

Example (Binary Goppa code (L, G))

The degree t = 2 Goppa polynomial G(z) = z? + z + 1 and
the support L = {0,1,5,8%, 6 +1,6° + 8,8 + f +1,5° + 1}
yield an [n =8,k =8 —2-3,d =22+ 1]—code (L, G) < FS.
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Example of code-based PKS: n=8 m=3,qg = 2.

Example (Binary Goppa code (L, G))

The degree t = 2 Goppa polynomial G(z) = z? + z+ 1 and
the support L = {0,1,5,8%,8+ 1,82+ 3,82+ B3+1,5% + 1}
yield an [n=8,k=8—2-3,d =2-2+ 1]—code I'(L, G) < FS.
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McEliece PKS
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McEliece PKS
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Example (McEliece)

Alice generates: u=(0,1)
Alice sends: y =(1,0,0,0,1,1,1,0)
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McEliece PKS

01010111
S-GGoppa'P—Gpub—<1 01 01 1 1 1>

Example (McEliece)

Alice generates: u=(0,1)

Alice sends: y =(1,0,0,0,1,1,1,0)
Bob receives: y =(1,0,0,0,1,1,1,0)

y*P~{-1}: yP =(0,0,1,0,0,1,1,1)

Bob decodes yD: yD =(0,0,1,1,1,1,1,1)
scrambled information bits mm: (0, 1)
mm*S~{-1}: yS = (0,1) The decryption was successful!
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Niederreiter PKS

00010110
10011111
10111010

M - Heoppa - P =Houv = o 1 ¢ 9 0 0 1 1
00110100
111100710

Example (Niederreiter)

Alice generates: u=(0,0,1,0,0,0,0,1)
Alice sends: y=(0,1,1,1,1,1)
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Niederreiter PKS

00010
1 0 011
1 0111
M - HGoppa P = Hpub = 01000
00110
1 1110
Example (Niederreiter)
Alice generates: u=(0,0,1,0,0,0,0,1)

Alice sends: y=1(0,1,1,1,1,
Bob receives: y =(0,1,1,1,1,
M~ {-1}*xy: yM = (0,1,1,1,0,0)
Bob decodes xD: xD = (1,0,0,0,0,1,0,0)
P~{-1}*xD: xS = (0,0,1,0,0,0,0,1)

The decryption was successful
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Quantum computing

Definition
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Quantum computing

Definition

In general, a qubit is in the state:
) = a0]0) + a1 [1), |aof® + [a]? = 1.

o Classical computer: 1 processor can be used repeating some
calculation O(2") times to perform one gate operation on
each of the 2" values representable by n bits.

@ Quantum computer: 2" values are representable using n
qubits. A quantum gate applied to these n qubit takes O(n)
time.
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Quantum computing: Assumptions

Assumption classically

False, quantum mechanically

A bit has a definite value.

A bit can only be 0 or 1.

A bit can be copied without
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Copying necessarily changes a
qubit's quantum state.
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Quantum computing: Assumptions

Assumption classically

False, quantum mechanically

A bit has a definite value.

A bit can only be 0 or 1.

A bit can be copied without
affecting its value.

A bit can be read without af-
fecting its value.

Reading one bit has no affect
on any other (unread) bit.

A qubit after it is read.
Superposition of 0 and 1.
Copying necessarily changes a
qubit's quantum state.
Reading a qubit in a superpo-
sition will change it.
Entangled qubits:  reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

34 /48



Post-quantum cryptography: PKS
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Post-quantum cryptography: PKS

@ The speedup thanks to Shor's quantum algorithm over the
best known classical algorithm for Factorization problem is:

o (e<6+o(1))n%uog ,,)%> % O(n?).
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Post-quantum cryptography: PKS

@ The speedup thanks to Shor's quantum algorithm over the
best known classical algorithm for Factorization problem is:

o (e<6+o(1)>n%uog ,,)%> % O(n?).

@ The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

OWN) =0 (e'°%”) SR O ((log N)?).

@ McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes. Generalizations
of all known attacks seem unfeasible.
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Review - 2 years later

Noteworthy remarks on the thesis after review

@ Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. | chose and suggested the topic.

During implementation one " bleak spot” in the literature
appeared — all 7 sources didn't make the maths behind one
step in Patterson’'s Decoding Algorithm explicit.

| filled this "hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

@ Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False™) within the text!

Thus | had trust in my implementation.

46 /48



References

Thank you for your attention!

47 /48



References

Thank you for your attention!

[§ Matthias Minihold, Master’s Thesis (2013)
Linear Codes and Applications in Cryptography.
Vienna University of Technology.

48 /48



