
Linear Codes and Applications in Cryptography

Matthias Minihold
matthias.minihold@gmx.at

Vortrag an der Ruhr-Universität Bochum

am 17. September 2015

1 / 48

Overview

Chapters

1 Linear Codes

2 Cryptography

3 Example of PKS based on Goppa Codes using Sage

4 Quantum Computing

2 / 48

Overview

Chapters

1 Linear Codes

2 Cryptography

3 Example of PKS based on Goppa Codes using Sage

4 Quantum Computing

3 / 48

Overview

Chapters

1 Linear Codes

2 Cryptography

3 Example of PKS based on Goppa Codes using Sage

4 Quantum Computing

4 / 48

Overview

Chapters

1 Linear Codes

2 Cryptography

3 Example of PKS based on Goppa Codes using Sage

4 Quantum Computing

5 / 48

quantum
computing quantum

information

qubit

quantum
parallelismquantum

algorithms

quantum
cryptography

computational
complexity theory

provable
security

P ?
= NP

run time
analysis

discrete
mathematics

conjectured
hard problems

cryptography

post
quantum

cryptography

security
considerations

linear codes

physics

classical
limitations

quantum
mechanics

realization,
implementation

practicability

Figure : A mind map visualizing the topics in this thesis.
6 / 48

Linear Codes: Goppa Codes

We define Goppa codes over a general alphabet Fq and present
decoding advantages in the binary case, because of Patterson’s
algorithm and the larger minimum distance between codewords.

Definition

Let G (z) ∈ Fqm [z] be a Goppa polynomial of degree t := degG (z)
and the support L = {α1, α2, . . . , αn} ⊆ Fqm , such that
G (α) 6= 0, for all α ∈ L. The Goppa code Γ(L,G) is defined by:

Γ(L,G) :=

{
c ∈ Fn

q |
n∑

i=1

ci
z − αi

≡ 0 mod G (z)

}
.

7 / 48

Linear Codes: Goppa Codes

We define Goppa codes over a general alphabet Fq and present
decoding advantages in the binary case, because of Patterson’s
algorithm and the larger minimum distance between codewords.

Definition

Let G (z) ∈ Fqm [z] be a Goppa polynomial of degree t := degG (z)
and the support L = {α1, α2, . . . , αn} ⊆ Fqm , such that
G (α) 6= 0, for all α ∈ L. The Goppa code Γ(L,G) is defined by:

Γ(L,G) :=

{
c ∈ Fn

q |
n∑

i=1

ci
z − αi

≡ 0 mod G (z)

}
.

8 / 48

Linear Codes: Goppa Codes

Theorem

Let G (z) =
∑t

i=0 giz
i with gi ∈ Fqm , gt 6= 0 be the Goppa

polynomial and let the support be L = {α1, α2, . . . , αn}.

Then the resulting Goppa code Γ(L,G) is a linear code with
parameters [n, k ≥ n −mt, d ≥ t + 1] over Fq.

Theorem

Given a Goppa polynomial G (z) over F2 of degree t := degG (z).

If G has no multiple zeros and

the lowest degree perfect square G (z) that is divisible by G (z)
is G (z) = G (z)2,

then the Goppa code Γ(L,G) has minimum distance d ≥ 2t + 1.

9 / 48

Linear Codes: Goppa Codes

Theorem

Let G (z) =
∑t

i=0 giz
i with gi ∈ Fqm , gt 6= 0 be the Goppa

polynomial and let the support be L = {α1, α2, . . . , αn}.
Then the resulting Goppa code Γ(L,G) is a linear code with
parameters [n, k ≥ n −mt, d ≥ t + 1] over Fq.

Theorem

Given a Goppa polynomial G (z) over F2 of degree t := degG (z).

If G has no multiple zeros and

the lowest degree perfect square G (z) that is divisible by G (z)
is G (z) = G (z)2,

then the Goppa code Γ(L,G) has minimum distance d ≥ 2t + 1.

10 / 48

Linear Codes: Goppa Codes

Theorem

Let G (z) =
∑t

i=0 giz
i with gi ∈ Fqm , gt 6= 0 be the Goppa

polynomial and let the support be L = {α1, α2, . . . , αn}.
Then the resulting Goppa code Γ(L,G) is a linear code with
parameters [n, k ≥ n −mt, d ≥ t + 1] over Fq.

Theorem

Given a Goppa polynomial G (z) over F2 of degree t := degG (z).

If G has no multiple zeros and

the lowest degree perfect square G (z) that is divisible by G (z)
is G (z) = G (z)2,

then the Goppa code Γ(L,G) has minimum distance d ≥ 2t + 1.

11 / 48

Linear Codes: Goppa Codes

Theorem

Let G (z) =
∑t

i=0 giz
i with gi ∈ Fqm , gt 6= 0 be the Goppa

polynomial and let the support be L = {α1, α2, . . . , αn}.
Then the resulting Goppa code Γ(L,G) is a linear code with
parameters [n, k ≥ n −mt, d ≥ t + 1] over Fq.

Theorem

Given a Goppa polynomial G (z) over F2 of degree t := degG (z).

If G has no multiple zeros and

the lowest degree perfect square G (z) that is divisible by G (z)
is G (z) = G (z)2,

then the Goppa code Γ(L,G) has minimum distance d ≥ 2t + 1.

12 / 48

Linear Codes: Goppa Codes

Theorem

Let G (z) =
∑t

i=0 giz
i with gi ∈ Fqm , gt 6= 0 be the Goppa

polynomial and let the support be L = {α1, α2, . . . , αn}.
Then the resulting Goppa code Γ(L,G) is a linear code with
parameters [n, k ≥ n −mt, d ≥ t + 1] over Fq.

Theorem

Given a Goppa polynomial G (z) over F2 of degree t := degG (z).

If G has no multiple zeros and

the lowest degree perfect square G (z) that is divisible by G (z)
is G (z) = G (z)2,

then the Goppa code Γ(L,G) has minimum distance d ≥ 2t + 1.

13 / 48

Cryptography: McEliece PKS

14 / 48

Cryptography: McEliece PKS

Algorithm 1: McEliece key generation

Input : (k × n) generator matrix G , error correcting capability t
Output: public key (G ′, t), private key (S ,G ,P)

Choose a (n × n) permutation matrix P
Choose a regular binary (k × k)−matrix S
Compute (k × n) matrix G ′ = SGP

Algorithm 2: McEliece encryption

Input : message m, public key (G ′, t) and thus implicitly n, k
Output: encrypted message c

Compute c ′ = mG ′

Randomly generate a vector z ∈ Fn
q,

with non-zero entries at ≤ t positions
Compute c = c ′ + z , the cipher text block

15 / 48

Cryptography: McEliece PKS

Algorithm 3: McEliece decryption

Input : encrypted message block c, private key (S ,G ,P)
Output: message m

Compute c = cP−1

The decoding algorithm of the code C corrects t errors. c → m.
Compute m = mS−1, the clear text message block.
// Precompute the matrices P−1 and S−1 once.

16 / 48

Example of code-based PKS: n = 8,m = 3, q = 2.

Example (Binary Goppa code Γ(L,G))

The degree t = 2 Goppa polynomial G (z) = z2 + z + 1 and
the support L = {0, 1, β, β2, β + 1, β2 + β, β2 + β + 1, β2 + 1}
yield an [n = 8, k = 8− 2 · 3, d = 2 · 2 + 1]−code Γ(L,G) ≤ F8

2.

GGoppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
,

HGoppa =



0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1

 .

17 / 48

Example of code-based PKS: n = 8,m = 3, q = 2.

Example (Binary Goppa code Γ(L,G))

The degree t = 2 Goppa polynomial G (z) = z2 + z + 1 and
the support L = {0, 1, β, β2, β + 1, β2 + β, β2 + β + 1, β2 + 1}
yield an [n = 8, k = 8− 2 · 3, d = 2 · 2 + 1]−code Γ(L,G) ≤ F8

2.

GGoppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
,

HGoppa =



0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1

 .

18 / 48

Example of code-based PKS: n = 8,m = 3, q = 2.

Example (Binary Goppa code Γ(L,G))

The degree t = 2 Goppa polynomial G (z) = z2 + z + 1 and
the support L = {0, 1, β, β2, β + 1, β2 + β, β2 + β + 1, β2 + 1}
yield an [n = 8, k = 8− 2 · 3, d = 2 · 2 + 1]−code Γ(L,G) ≤ F8

2.

GGoppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
,

HGoppa =



0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1

 .

19 / 48

McEliece PKS

S · GGoppa · P = Gpub =

(
0 1 0 1 0 1 1 1
1 0 1 0 1 1 1 1

)
.

Example (McEliece)

Alice generates: u = (0, 1)
Alice sends: y = (1, 0, 0, 0, 1, 1, 1, 0)
Bob receives: y = (1, 0, 0, 0, 1, 1, 1, 0)
y*P^{-1}: yP = (0, 0, 1, 0, 0, 1, 1, 1)
Bob decodes yD: yD = (0, 0, 1, 1, 1, 1, 1, 1)
scrambled information bits mm: (0, 1)
mm*S^{-1}: yS = (0, 1) The decryption was successful!

20 / 48

McEliece PKS

S · GGoppa · P = Gpub =

(
0 1 0 1 0 1 1 1
1 0 1 0 1 1 1 1

)
.

Example (McEliece)

Alice generates: u = (0, 1)
Alice sends: y = (1, 0, 0, 0, 1, 1, 1, 0)

Bob receives: y = (1, 0, 0, 0, 1, 1, 1, 0)
y*P^{-1}: yP = (0, 0, 1, 0, 0, 1, 1, 1)
Bob decodes yD: yD = (0, 0, 1, 1, 1, 1, 1, 1)
scrambled information bits mm: (0, 1)
mm*S^{-1}: yS = (0, 1) The decryption was successful!

21 / 48

McEliece PKS

S · GGoppa · P = Gpub =

(
0 1 0 1 0 1 1 1
1 0 1 0 1 1 1 1

)
.

Example (McEliece)

Alice generates: u = (0, 1)
Alice sends: y = (1, 0, 0, 0, 1, 1, 1, 0)
Bob receives: y = (1, 0, 0, 0, 1, 1, 1, 0)
y*P^{-1}: yP = (0, 0, 1, 0, 0, 1, 1, 1)
Bob decodes yD: yD = (0, 0, 1, 1, 1, 1, 1, 1)
scrambled information bits mm: (0, 1)
mm*S^{-1}: yS = (0, 1) The decryption was successful!

22 / 48

Niederreiter PKS

M · HGoppa · P = Hpub =



0 0 0 1 0 1 1 0
1 0 0 1 1 1 1 1
1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1
0 0 1 1 0 1 0 0
1 1 1 1 0 0 1 0

.

Example (Niederreiter)

Alice generates: u = (0, 0, 1, 0, 0, 0, 0, 1)
Alice sends: y = (0, 1, 1, 1, 1, 1)
Bob receives: y = (0, 1, 1, 1, 1, 1)
M^{-1}*y: yM = (0, 1, 1, 1, 0, 0)
Bob decodes xD: xD = (1, 0, 0, 0, 0, 1, 0, 0)
P^{-1}*xD: xS = (0, 0, 1, 0, 0, 0, 0, 1)
The decryption was successful

23 / 48

Niederreiter PKS

M · HGoppa · P = Hpub =



0 0 0 1 0 1 1 0
1 0 0 1 1 1 1 1
1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1
0 0 1 1 0 1 0 0
1 1 1 1 0 0 1 0

.

Example (Niederreiter)

Alice generates: u = (0, 0, 1, 0, 0, 0, 0, 1)
Alice sends: y = (0, 1, 1, 1, 1, 1)

Bob receives: y = (0, 1, 1, 1, 1, 1)
M^{-1}*y: yM = (0, 1, 1, 1, 0, 0)
Bob decodes xD: xD = (1, 0, 0, 0, 0, 1, 0, 0)
P^{-1}*xD: xS = (0, 0, 1, 0, 0, 0, 0, 1)
The decryption was successful

24 / 48

Niederreiter PKS

M · HGoppa · P = Hpub =



0 0 0 1 0 1 1 0
1 0 0 1 1 1 1 1
1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1
0 0 1 1 0 1 0 0
1 1 1 1 0 0 1 0

.

Example (Niederreiter)

Alice generates: u = (0, 0, 1, 0, 0, 0, 0, 1)
Alice sends: y = (0, 1, 1, 1, 1, 1)
Bob receives: y = (0, 1, 1, 1, 1, 1)
M^{-1}*y: yM = (0, 1, 1, 1, 0, 0)
Bob decodes xD: xD = (1, 0, 0, 0, 0, 1, 0, 0)
P^{-1}*xD: xS = (0, 0, 1, 0, 0, 0, 0, 1)
The decryption was successful

25 / 48

Quantum computing

Definition

In general, a qubit is in the state:
|ψ〉 = a0 |0〉+ a1 |1〉, |a0|2 + |a1|2 = 1.

Classical computer: 1 processor can be used repeating some
calculation O(2n) times to perform one gate operation on
each of the 2n values representable by n bits.

Quantum computer: 2n values are representable using n
qubits. A quantum gate applied to these n qubit takes O(n)
time.

26 / 48

Quantum computing

Definition

In general, a qubit is in the state:
|ψ〉 = a0 |0〉+ a1 |1〉, |a0|2 + |a1|2 = 1.

Classical computer: 1 processor can be used repeating some
calculation O(2n) times to perform one gate operation on
each of the 2n values representable by n bits.

Quantum computer: 2n values are representable using n
qubits. A quantum gate applied to these n qubit takes O(n)
time.

27 / 48

Quantum computing

Definition

In general, a qubit is in the state:
|ψ〉 = a0 |0〉+ a1 |1〉, |a0|2 + |a1|2 = 1.

Classical computer: 1 processor can be used repeating some
calculation O(2n) times to perform one gate operation on
each of the 2n values representable by n bits.

Quantum computer: 2n values are representable using n
qubits. A quantum gate applied to these n qubit takes O(n)
time.

28 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.
A bit can only be 0 or 1. Superposition of 0 and 1.
A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

29 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.

A bit can only be 0 or 1. Superposition of 0 and 1.
A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

30 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.
A bit can only be 0 or 1. Superposition of 0 and 1.

A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

31 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.
A bit can only be 0 or 1. Superposition of 0 and 1.
A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

32 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.
A bit can only be 0 or 1. Superposition of 0 and 1.
A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

33 / 48

Quantum computing: Assumptions

Assumption classically False, quantum mechanically

A bit has a definite value. A qubit after it is read.
A bit can only be 0 or 1. Superposition of 0 and 1.
A bit can be copied without
affecting its value.

Copying necessarily changes a
qubit’s quantum state.

A bit can be read without af-
fecting its value.

Reading a qubit in a superpo-
sition will change it.

Reading one bit has no affect
on any other (unread) bit.

Entangled qubits: reading
one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

34 / 48

Post-quantum cryptography: PKS

The speedup thanks to Shor’s quantum algorithm over the
best known classical algorithm for Factorization problem is:

O
(
e(C+o(1))n

1
3 (log n)

2
3

)
Shor−→ O(n3).

The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

O(
√
N) = O

(
e

log N
2

)
Shor−→ O((log N)3).

McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes. Generalizations
of all known attacks seem unfeasible.

35 / 48

Post-quantum cryptography: PKS

The speedup thanks to Shor’s quantum algorithm over the
best known classical algorithm for Factorization problem is:

O
(
e(C+o(1))n

1
3 (log n)

2
3

)
Shor−→ O(n3).

The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

O(
√
N) = O

(
e

log N
2

)
Shor−→ O((log N)3).

McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes. Generalizations
of all known attacks seem unfeasible.

36 / 48

Post-quantum cryptography: PKS

The speedup thanks to Shor’s quantum algorithm over the
best known classical algorithm for Factorization problem is:

O
(
e(C+o(1))n

1
3 (log n)

2
3

)
Shor−→ O(n3).

The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

O(
√
N) = O

(
e

log N
2

)
Shor−→ O((log N)3).

McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes. Generalizations
of all known attacks seem unfeasible.

37 / 48

Post-quantum cryptography: PKS

The speedup thanks to Shor’s quantum algorithm over the
best known classical algorithm for Factorization problem is:

O
(
e(C+o(1))n

1
3 (log n)

2
3

)
Shor−→ O(n3).

The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

O(
√
N) = O

(
e

log N
2

)
Shor−→ O((log N)3).

McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes.

Generalizations
of all known attacks seem unfeasible.

38 / 48

Post-quantum cryptography: PKS

The speedup thanks to Shor’s quantum algorithm over the
best known classical algorithm for Factorization problem is:

O
(
e(C+o(1))n

1
3 (log n)

2
3

)
Shor−→ O(n3).

The discrete logarithm problem on elliptic curves (ECDLP) is
affected, too — with an exponential speedup, where N
denotes the number of points on the elliptic curve:

O(
√
N) = O

(
e

log N
2

)
Shor−→ O((log N)3).

McEliece and Niederreiter PKS are still unbroken,
if based on binary Goppa codes. Generalizations
of all known attacks seem unfeasible.

39 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

40 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography.

I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

41 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.

During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

42 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.

I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

43 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

44 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!

Thus I had trust in my implementation.

45 / 48

Review - 2 years later

Noteworthy remarks on the thesis after review

Objective of this thesis was the combination of multiple
scientific fields to a consistent text about uses of linear codes
in cryptography. I chose and suggested the topic.
During implementation one ”bleak spot” in the literature
appeared — all 7 sources didn’t make the maths behind one
step in Patterson’s Decoding Algorithm explicit.
I filled this ”hole” for decoding Binary Goppa Codes and
proved, implemented and demonstrated the functionality.

Generating Chapter 3 from .tex source computes the examples
on the fly with random input (by calling Sage) and checks
validity displaying “True” (or “False”) within the text!
Thus I had trust in my implementation.

46 / 48

References

Thank you for your attention!

Matthias Minihold, Master’s Thesis (2013)

Linear Codes and Applications in Cryptography.

Vienna University of Technology.

47 / 48

References

Thank you for your attention!

Matthias Minihold, Master’s Thesis (2013)

Linear Codes and Applications in Cryptography.

Vienna University of Technology.

48 / 48

