HOMOMORPHIC ENCRYPTION

to Privacy-Preserving Image Classification in the Cloud

Dr. Matthias Minihold • 20.08.2021 Virtual @ QPQ Technology Seminar, Dublin

HOMOMORPHIC ENCRYPTION

Overview

- 1: Quantum Computing Threatens IT Infrastructure
- 2: Privacy-Preserving Predictions in the Cloud

Law Perspective

Technical Perspective

Machine Learning as a Service (MLaaS)

Recapitulation: Homomorphisms and FHE

Machine Learning & Neural Network Basics

FHE-friendly Discretized Neural Networks (DiNNs)

3: Experiments - Digit Classification with FHE-DiNN

MNIST Digit Recognition & Classification

Impact of Quantum Computing on IT Security—Overview

Goals of Cryptography within IT Security

Communication

(A speaks in private with B $_{\scriptscriptstyle \parallel}$

Authenticity

(A knows it is B where data originates

Integrity

(A can verify that the data is unmodified and complete

Non-repudiation

(B cannot deny sending signed data

Effects of Grover's and Shor's quantum algorithms in cryptanalysis

- Symmetric Ciphers (AES, ...): security level halved by Grover's algorithm;
 - $\exists c \in \mathbb{R} \ \forall n \in \mathbb{N} : \mathcal{O}\left(c^{n}\right) \xrightarrow{\mathsf{Grover}} \mathcal{O}\left(c^{rac{n}{2}}\right) = \mathcal{O}\left(\sqrt{c^{n}}\right),$
- Encryption (RSA, ECC) and signatures (RSA, (EC)DSA): broken by Shor's algorithm $\exists c \in \mathbb{R} \ \forall n \in \mathbb{N} : \mathcal{O}(c^n) \xrightarrow{\mathsf{Shor}} \mathcal{O}(n^c).$

Implementation and integration issues lead to delayed migration to post-quantum crypto.

Computing on Encrypted Data Practice—Law Perspective

pprox 50 Years Data Protection Regulations: Timeline for the EU

- $1970\,$ Hessian Data Protection Regulation privacy law (Hesse),
- 1986 Overhauled $2^{
 m nd}$ version for public authorities (in Germany),
- 1995 Adapt & blue-print natural person's EU Data Protection Directive,
- 2016 Superseded by EU's General Data Protection Regulation (GDPR),
- 2018 GDPR is enforceable since May 2018 granting basic protection,
- 2021 Prominent coverage of fines issued due to GDPR all over Europe.

Any 'free' Cloud-service means user data is the product.

Computing on Encrypted Data Theory—Theoretical Perspective

Let $n \in \mathbb{N}$ denote the security parameter. Typically > 80 bit post-quantum security level.

(Public-Key) Encryption Scheme S

Given an encryption (resp. decryption) function $\operatorname{Enc}_{\mathsf{pk}}:\mathcal{M}\to\mathcal{C}$ (resp. $\operatorname{Dec}_{\mathsf{sk}}:\mathcal{C}\to\mathcal{M}$) with secret-key–public-key pair $(\mathsf{sk},\mathsf{pk}) \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{\mathsf{Gen}}(1^n)$; we call it private-key, if $\mathsf{sk}=\mathsf{pk}$, and require all algorithms to be efficiently computable (PPT).

For all plaintexts $m \in \mathcal{M}$, and all key-pairs $(sk, pk) \in \mathcal{K}$ we have

$$\Pr[\mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{pk}}(m)) = m] = 1 - \operatorname{negl}(n), \text{ holds with overwhelming probability ('w.o.p.')}.$$

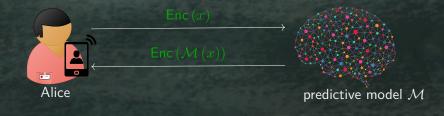
Evaluating a Function f on Encrypted Data

Let $S = (\mathsf{Gen}(1^n), \mathsf{Enc}(.), \mathsf{Dec}(.))$ be a (public-key) encryption scheme:

$$\operatorname{Eval}(f,\operatorname{Enc}_{\operatorname{pk}}(m))=c\in\mathcal{C}, \text{ such that w.o.p. }\operatorname{Dec}_{\operatorname{sk}}(c)=f(m) \text{ holds.}$$

Machine Learning as a Service (MLaaS)

User submits $\mathsf{Enc}(x)$ and recovers $\mathsf{Enc}(x)$; the encrypted prediction.



- ✓ Privacy input & output data is encrypted (user has only key)
- Efficiency is a central practical issue

Goal of PhD-Thesis: FHE-DiNN — fast homomorphic evaluation of neural networks ✓

Recapitulation: Homomorphisms and Fully Homomorphic Encryption (FHE)

Remarkably, FHE can evaluate any function f on encrypted inputs c.

FHE means " $\forall f: f \circ \mathsf{FHE}.\mathsf{Enc}_{\mathsf{pk}} \ \widehat{=} \ \mathsf{FHE}.\mathsf{Enc}_{\mathsf{pk}} \circ f$ "

Let (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) be an (IND-CPA–secure public-key) encryption scheme with compact ciphertexts \mathcal{C} .

If for any computable function $f \in \mathcal{F}$ and all plaintexts $m_1, m_2 \in \mathcal{M}$,

$$(f \circ \mathsf{FHE}.\mathsf{Enc}_{\mathsf{pk}})(m_1, m_2) = \overbrace{f([m_1]_{\mathsf{pk}}, [m_2]_{\mathsf{pk}})}^{f(c_1, c_2) = c} \stackrel{c' \in \mathcal{C}}{=} \underbrace{[f(m_1, m_2)]_{\mathsf{pk}}}^{c' \in \mathcal{C}}$$
$$= (\mathsf{FHE}.\mathsf{Enc}_{\mathsf{pk}} \circ f)(m_1, m_2),$$

holds with $f(m_1, m_2) = m_3 \in \mathcal{M} \subseteq \mathcal{C}$, then it is an FHE scheme.

Actually, w.o.p. FHE.Dec_{sk} $(c) = FHE.Dec_{sk}(c') \in \mathcal{M}$ must match!

FHE — 'The Holy Grail of Cryptography' [Mic10]

≈ 40 Years of FHE: Timeline

- $1978\,$ Adleman, Dertouzos, and Rivest mention private homomorphisms
- 2009 Gentry's theoretical breakthrough construction: 1st generation
- $2012~{
 m Brakerski}$, Gentry, and Vaikuntanathan (BGV)'s $simpler~2^{
 m nd}~{
 m gen}$
- 2013 Gentry, Sahai, and Waters (GSW)'s efficient: 3rd generation
- 2016 Chillotti, Gama, Georgieva, and Izabachène (CGGI)'s efficient implementation: TFHE
- 2021 FHE schemes' & applications' practical breakthrough?

Definitions: From LWE to TLWE and TGSW

LWE assumption (over the Torus)

Given a secret $\mathbf{s} \overset{\$}{\leftarrow} \{0,1\}^n$, it is hard to distinguish between (\mathbf{a},b) , where $\mathbf{a} \overset{\$}{\leftarrow} \mathbb{T}^n$ and $b = \langle \mathbf{s}, \mathbf{a} \rangle + e \in \mathbb{T}$, with $e \leftarrow \chi$, and $(\mathbf{u},v) \overset{\$}{\leftarrow} \mathbb{T}^{n+1}$.

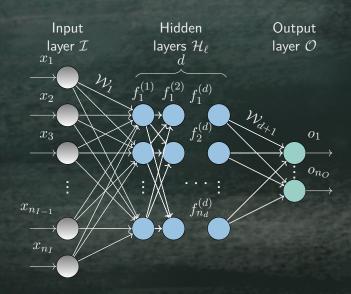
To define polynomial and matrix generalizations, we set:

- $\circ \ \mathbb{B} := \{-1,1\}, \ \mathbb{B}[X]/(X^N+1)$, polynomials of deg < N = 1024,
- $\circ \ \mathbb{T} := \mathbb{R}/\mathbb{Z}$, with torus-polynomials $\mathbb{T}_N[X] := \mathbb{T}[X]/(X^N+1)$,
- $\circ \ \mathbb{T}_N[X]^k := \mathbb{T}[X]^k/(X^N+1)$, tuples of torus-polynomials, $k \geq 1$.

TLWE/TGSW Sample

Let $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{B}[X]^k/(X^N+1)$, a vector of $k \geq 1$ polynomials, and message $m \in \mathbb{T}_N[X]^k$. $(\mathbf{a},b) \in \mathbb{T}_N[X]^{k+1}$ is a TLWE Sample, if $a \stackrel{\$}{\leftarrow} \mathbb{T}_N[X]^k$, $b = \mathbf{a} \cdot \mathbf{s} + m + e$, with Gaussiannoise $e \leftarrow \chi_\alpha, \alpha > 0$ at $\mathbf{a} \cdot \mathbf{s} + m$. A TGSW Sample is a list of $\ell \geq 1$ TLWE Samples or a $(k+1 \times \ell)$ -matrix.

Deep Feed-Forward Neural Network with $n_{\mathcal{I}}:n_1:\dots:n_d:n_{\mathcal{O}}$ —topology



Close-up on Neuron

Computation for every neuron:

$$y = \varphi\left(\sum_{i} w_{i} x_{i}\right),$$

where φ is an activation function.

FHE-friendly Discretized Neural Networks

Goal: FHE-friendly model of neural network: $x_i, w_i, y \in \mathbb{Z}$.

Definition (DiNN)

A neural network whose layers have inputs in $\{-I,\ldots,I\}\subseteq\mathbb{Z}$, weights in $\{-W,\ldots,W\}\subseteq\mathbb{Z}$, for $I,W,O\in\mathbb{N}$, and each neuron's activation function maps the weighted sum to integer values in $\{-O,\ldots,O\}\subseteq\mathbb{Z}$.

- 1. Not restrictive as it seems as, e.g., binarized NNs perform well;
- 2. trade-off between size and performance;
- 3. conversion is straight-forward.

Main impediment: non-linear functions

Applying the non-linear activation function after linear layer.

Main Idea: Activation While Bootstrapping FHE

Combine necessary refreshing with desirable activation function:

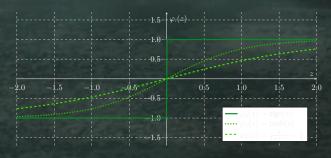
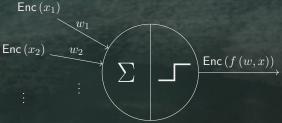


Figure: Several neural network activation functions and our choice φ_0 .

$$\operatorname{Enc}\left(z\right)
ightarrow \operatorname{Enc}\left(f\left(z\right)\right)
ightarrow \ldots$$

Close-up on a single neuron: two steps



Each neuron computes $\operatorname{Enc}\left(f\left(w,x\right)\right), e.g. \operatorname{Enc}\left(\operatorname{sign}\left(\langle w,x\rangle\right)\right)$:

- 1. Compute inner product $\sum_{i} w_{i} \operatorname{Enc}(x_{i})$
- 2. Bootstrap encryption of activated result

(linearly homomorphic)

(fully homomorphic)

Torus Fully Homomorphic Encryption (TFHE)

We use Torus Fully Homomorphic Encryption framework on $\mathbb{T}:=\mathbb{R}/\mathbb{Z}.$

Security Assumption underlying TFHE and FHE-DiNN

Hardness of Learning with Errors (LWE) on \mathbb{T} :

$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e \mod 1) \stackrel{c}{\approx} (\mathbf{a}, \mathbf{u}) \in \mathbb{T}^{n+1},$$

where $e \leftarrow \chi_{\alpha}$, $\mathbf{s} \leftarrow \mathbb{B}^n$, $\mathbf{a}, \mathbf{u} \leftarrow \mathbb{T}^n$ with error parameter α .

We also use other torus-based schemes allowing performance increase:

- \circ TLWE (for encrypting polynomials $\mathbb{T}[X]$)
- o TGSW ('matrix TLWE'; roughly equivalent to GSW construction)

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving boostrapping operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

Goal Packing: encrypt polynomial $\mathbb{T}[X]$ instead of \mathbb{T} scalars: $x(X) = \sum_i x_i \, X^i \in \mathbb{T}[X]$ a ciphertext.

Idea Redefine and pack (clear) weights in hidden layers: $w(X) := \sum_i w_i X^{-i}$.

Effect Constant term of $x(X) \cdot w(X) \in \mathbb{T}[X]$ is $\sum_i w_i x_i \in \mathbb{T}$.

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving boostrapping operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate
 - Goal Reduce LWE dimension, ensuring security level, to optimize memory, efficiency, bootstrapping–key's size, final noise, and the number of expensive external products.

 $Idea\ Bootstrap = SampleExtract \circ BlindRotate \circ KeySwitch$

Effect Less noise; size n < N is used only for bootstrapping

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving boostrapping operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

Goal Dynamically change the message space to reduce errors. Idea For I_ℓ , an upper bound on the sum in layer $\ell+1$, define:

$$\mathtt{testvector}(X) = t(X) := \frac{1}{2I_\ell + 1} \sum_{i=0}^{N-1} X^i.$$

Effect Less slices, hence less inaccurate decisions when rounding.

- 1. Combining implementations of Bootstrapping and Activation
- 2. Reducing bandwidth usage by Packing ciphertexts
- 3. Moving boostrapping operation order, i.e., when to do a Keyswitch
- 4. Reparametrizing message space between neural network layers
- 5. Optimizing alternative implementation of BlindRotate

We unfold the loop for computing $X^{\langle \mathbf{s}, \mathbf{a} \rangle}$ in BlindRotate.

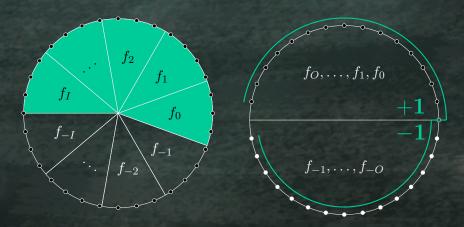
Goal Trade-off off-line pre-processing for on-line speed.

Idea Windowed processing & using algebraic keys-relations.

Effect Larger bootstrapping key traded for faster execution.

Extending the TFHE Framework for Fast Bootstrapping

...with anti-periodic $f: \mathbb{W}_I \to \mathbb{W}_O$, mapping input slots to outputs:



Moving the bootstrapping operation order

Bootstrap

Bootstrapping-to-sign comprises 3 algorithms, given bk, ksk, t(X), and an N-dim. LWE sample $\mathbf{c}=(\mathbf{a},b)=\mathsf{LWE}_{\mathbf{s},\alpha}(m)$ of message m under key \mathbf{s} :

BlindRotate: $(TGSW)^n \times (n - LWE) \times TLWE \rightarrow TLWE$

Rotates the wheel, i.e. computes $X^{b-\langle \mathbf{s}, \mathbf{a} \rangle} \cdot t(X)$.

SampleExtract: TLWE $\rightarrow N$ -LWE

Extracts N-LWE sample μ_0 of message $\mu \in \mathbb{T}_N[X]$.

 $\mathsf{KeySwitch} \colon \, (n - \mathsf{LWE})^n \, \times \, N\text{-}\mathsf{LWE} \to n\text{-}\mathsf{LWE}$

Returns a n-LWE sample under \mathbf{s}' of $b - \langle \mathbf{s}, \mathbf{a} \rangle$.

Reversing the two LWE schemes of sizes n < N improves run-time.

Fast Fourier Transform (FFT)

Think of $\mathbf{x} = \mathsf{Enc}_{\mathsf{pk}}(\mathbf{p}) \in \mathbb{T}$ as an TLWE encrypted pixel (or a whole picture packed into one input ciphertext $\mathbf{x} = \mathsf{Enc}_{\mathsf{pk}}\left(\sum_i p_i X^i\right) \in \mathbb{T}[X]$), and \mathbf{w} as public (or company) known weights per neuron.

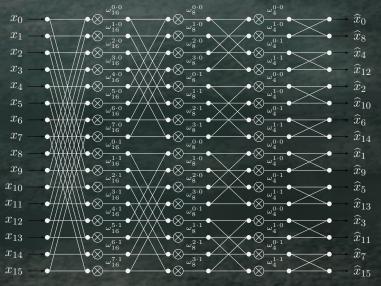
We pre-compute the Fourier transform $\hat{\mathbf{w}} = \mathcal{F}_{2N}(\mathbf{w})$ of \mathbf{w} off-line.

Convolution and Efficient (FFT) Multiplication

Let $N, I \in \mathbb{N}$ be powers of 2, for instance $N=1024, I=2^{32}$. The input polynomial $\mathbf{x} \in \mathbb{T}_N[X]$ and the weights are embedded in the first components of vectors as $w_j \in \mathbb{Z}, x_j \in \mathbb{W}_I \subseteq \mathbb{T}, 0 \leq j < N$, then using the fast Fourier transform allows efficient computation of the multisum:

$$\begin{split} &(\mathcal{F}_N(\mathbf{x}))_m = (\mathcal{F}_{\frac{N}{2}}((\mathbf{x}_{2j})_{0 \leq j < \frac{N}{2}}))_{\frac{m}{2}} + \omega_{\frac{N}{2}}^m \cdot (\mathcal{F}_{\frac{N}{2}}((\mathbf{x}_{2j+1})_{0 \leq j < \frac{N}{2}}))_{\frac{m}{2}+1}, \\ &\mathcal{F}_N(\mathbf{x} * \mathbf{w}) = \quad \mathcal{F}_N(\mathbf{x}) \cdot \mathcal{F}_N(\mathbf{w}) \in \mathbb{C}, \\ &(\mathbf{x} * \mathbf{w}) \equiv \mathcal{F}_N^{-1}(\mathcal{F}_N(\mathbf{x}) \cdot \mathcal{F}_N(\mathbf{w})) \mod 1. \end{split}$$

Speeding-up the Processing: FFT Data-Flow $\widehat{\mathbf{x}} = \mathbb{F}_{2N}(\mathbf{x})$



FFT's divide-and-conquer strategy for power-of-2 lengths; 2N=16.

Digit Recognition & Classification in the Cloud

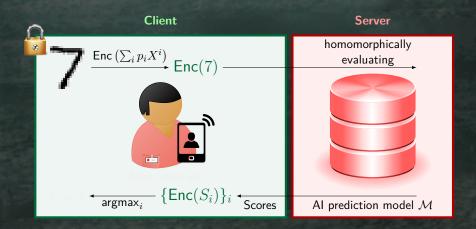
We showcase a solution to the problem of $\emph{digit recognition}.$

Digit Recognition & Classification in the Cloud

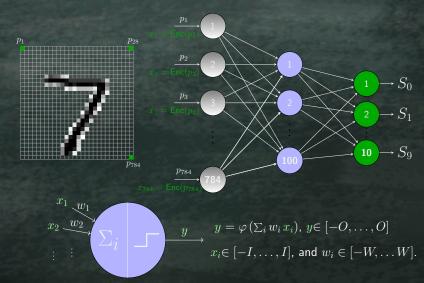
We showcase a solution to the problem of **blind** digit recognition.

Dataset: MNIST ($60\,000$ images in training set $+\ 10\,000$ in test set).

FHE-DiNN: Overview [BMMP18]



FHE-DiNN: Input Image and 784:100:10-Neural Network



Hidden Neuron (zoomed)

FHE-DiNN: Algorithmic Overview [BMMP18]



FHE-DiNN: Evaluation Formula of our 784:100:10-network

We assume a neural network trained on $D_{\mathsf{train}} = \{(\mathbf{x}^{(i)}, L^{(i)})_i\}.$

 $\mathcal{M}_{\mathsf{BHE-DIMM}}$ models a weighted recomposition of a TLWE encryption \mathbf{c}_0 ;

$$\begin{cases}
\mathbb{T}_N[X]^k \longrightarrow (\mathbb{T}_N[X]^k)^{10} \\
\mathbf{c}_0 \mapsto \vec{\mathbf{c}}_2 = \sum_{\ell_2=1}^{100} \left(\underbrace{\varphi_1 \left(\sum_{\ell_1=1}^{784} (\mathbf{c}_0)_{\ell_1} \cdot (\widehat{\mathbf{w}_{0\to 1}})_{\ell_1} \right)}_{\vec{\mathbf{c}}_1} \right) \\
- \underbrace{\left(\widehat{\mathbf{W}}_{1\to 2} \right)}_{\ell_2} \cdot \left(\widehat{\mathbf{W}}_{1\to 2} \right) \ell_2.
\end{cases}$$

The homomorphic evaluation yields 10 samples $\overrightarrow{c_O}$ as output, encrypting the perceptrons' predicted label likelihoods of an encrypted input digit $c_{\mathcal{I}}$.

 $\begin{array}{l} \mathsf{Label}\ L = \mathsf{argmax}_i \, (\mathsf{Dec_{sk}} \, (\overrightarrow{\mathbf{c}_{\mathcal{O}}}))_i \ \mathsf{is} \ \mathsf{how} \ \mathsf{the} \ \mathsf{model} \ \mathsf{sees} \ \mathsf{the} \ \mathsf{input's} \\ \mathsf{depicted}\ \mathsf{digit:} L = \mathcal{M}_{\mathsf{FHE-DiNN}} \, (\mathbf{c}_{\mathcal{I}}), \ \mathsf{with} \ \mathsf{Dec_{sk}} \, (\mathbf{c}_{\mathcal{I}}) \approx \mathbf{x}^{(\mathcal{I})} \in (D_{\mathsf{train}})_{\mathbf{x}}. \end{array}$

Main Result of the PhD-Thesis—Scalability

The analysis shows how to bootstrap the most expensive layer, then repeat for arbitrary many hidden neurons arranged in various layers.

FHE-DiNN Experiments: Practical Performance Neural Networks

Performance metrics on (clear) inputs x:

	Original NN	DiNN + hard_sigmoid	DiNN + sign
FHE-DiNN 30	94.76%	93.76% (-1 %)	93.55% (-1.21%)
FHE-DiNN 100	96.75%	96.62% (-0.13%)	96.43% (-0.32%)

Performance metrics on (encrypted) inputs $Enc_{pk}(x)$:

	Acc.	Disagreements	Total wrong BS	when dis.	Time	
30	93.71%	273 (105–121)	3 383/300 000	196/273	0.515 s	
100	96.26%	127 (61–44)	9 088/1 000 000	105/127	1.679 s	
30 w	93.46%	270 (119–110)	2912/300000	164/270	0.491 s	
100 w		150 (66–58)	7 452/1 000 000	99/150	1.640 s	

window size w = 2

Performance Comparison with Microsoft Cryptonets [DGBL⁺16]

	Over	all Network	per Image			
	$n_{\mathcal{H}}$	Accuracy	Eval [s]	c [B]	Enc [s]	Dec [s]
Cryptonets	945	98.95 %	570	586 M	122	5
$Cryptonets^{\star}$	945	98.95 %	0.07	73.3 k	0.015	0.0006
FHE-DiNN30	30	93.71 %	0.49	$pprox 8.2 \ k$	0.000 168	0.000 010 6
FHE-DiNN100	100	96.35~%	1.64	$pprox 8.2 \ \mathrm{k}$	0.000 168	0.000 010 6

Cryptonets* is amortized per image (accumulating 8192 inferences)

Experimental Results

Timing/Image on Intel Core i7-4720HQ CPU @ 2.60GHz: 1.64 [sec]

Reference

Practical homomorphic encryption and cryptanalysis.

Matthias Minihold. PhD Thesis. Bochum, 2019.

https://hss-opus.ub.ruhr-uni-bochum.de/opus4/files/6510/diss.pdf

Questions?