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Impact of Quantum Computing on IT Security—Overview

Goals of Cryptography within IT Security
◦ Confidentiality (A speaks in private with B)
◦ Authenticity (A knows it is B she speaks with)
◦ Integrity (A can verify that B signed data)
◦ Non-repudiation (A cannot undo signature on previously signed data)

Effects of Grover’s and Shor’s quantum algorithms in cryptanalysis
◦ Symmetric Ciphers (AES, . . .): security level halved by Grover’s algorithm;
∃c ∈ R ∀n ∈ N : O (cn) Grover−−−−→ O

(
c

n
2
)

= O
(√

cn
)
,

◦ Encryption (RSA, ECC) and signatures (RSA, (EC)DSA): broken by Shor’s algorithm;
∃c ∈ R ∀n ∈ N : O (cn) Shor−−→ O (nc).

Implementation and integration issues lead to delayed migration to post-quantum crypto.
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Computing on Encrypted Data Practice—Law Perspective

≈ 50 Years Data Protection Regulations: Timeline for the EU
1970 Hessian Data Protection Regulation privacy law (Hesse),
1986 Overhauled 2nd version for public authorities (in Germany),
1995 Adapt & blue-print natural person’s EU Data Protection Directive,
2016 Superseded by EU’s General Data Protection Regulation (GDPR),
2018 GDPR is enforceable since May 2018 granting basic protection,
2020 GDPR is prominently covered in the media (known as DSGVO in Germany).

Any ’free’ Cloud-service means user data is the product.
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Computing on Encrypted Data Theory—Theoretical Perspective
Let n ∈ N denote the security parameter. Typically > 80 bit post-quantum security level.

(Public-Key) Encryption Scheme S

Given an encryption (resp. decryption) function Encpk : M → C (resp. Decsk : C → M)
with secret-key–public-key pair (sk, pk) $← Gen(1n); we call it private-key, if sk = pk, and
require all algorithms to be efficiently computable (ppt).
For all plaintexts m ∈M, and all key-pairs (sk, pk) ∈ K we have

Pr[Decsk(Encpk(m)) = m] = 1− negl(n), holds with overwhelming probability (’w.o.p.’).

Evaluating a Function f on Encrypted Data
Let S = (Gen(1n), Enc(.), Dec(.)) be a (public-key) encryption scheme:

Eval(f, Encpk(m)) = c ∈ C, such that w.o.p. Decsk(c) = f(m) holds.
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Machine Learning as a Service (MLaaS)

User submits Enc (x) and recovers Enc (M (x)); the encrypted prediction.

COOPER

Alice predictive model M

x

M (x)

Private data protection?
GDPR compliant!

Enc (x)

Enc (M (x))

3 Privacy input & output data is encrypted (user has only key)
u Efficiency is a central practical issue
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Recapitulation: Homomorphisms and Fully Homomorphic Encryption (FHE)

Remarkably, FHE can evaluate any function f on encrypted inputs c.
FHE means "∀f : f ◦ FHE.Encpk =̂ FHE.Encpk ◦ f"
Let (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) be an (IND-CPA–secure public-key) encryp-
tion scheme with compact ciphertexts C.
If for any computable function f ∈ F and all plaintexts m1, m2 ∈M,

(f ◦ FHE.Encpk)(m1, m2) =
f(c1,c2)=c︷ ︸︸ ︷

f([m1]pk, [m2]pk) !=
c′∈C︷ ︸︸ ︷

[f(m1, m2)]pk

= (FHE.Encpk ◦ f)(m1, m2),

holds with f(m1, m2) = m3 ∈M ⊆ C, then it is an FHE scheme.

Actually, w.o.p. FHE.Decsk(c) = FHE.Decsk(c′) ∈M must match!
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FHE — ’The Holy Grail of Cryptography’ [Mic10]

≈ 40 Years of FHE: Timeline
1978 Adleman, Dertouzos, and Rivest mention private homomorphisms
2009 Gentry’s theoretical breakthrough construction: 1st generation
2012 Brakerski, Gentry, and Vaikuntanathan (BGV)’s simpler 2nd gen.
2013 Gentry, Sahai, and Waters (GSW)’s efficient: 3rd generation
2016 Chillotti, Gama, Georgieva, and Izabachène (CGGI)’s efficient implementation:

(TFHE)
2020 FHE schemes & applications’ practical breakthrough?
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Deep Feed-Forward Neural Network with nI : n1 : . . . : nd : nO–topology
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Close-up on Neuron

Computation for every neuron:

x1

x2

...
...

w1

w2
yΣ φ

xi, wi, y ∈ R

y = φ

(∑
i

wi xi

)
,

where φ is an activation function.
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FHE-friendly Discretized Neural Networks

Goal: FHE-friendly model of neural network: xi, wi, y ∈ Z.

Definition (DiNN)
A neural network whose layers have inputs in {−I, . . . , I} ⊆ Z, weights in {−W, . . . , W} ⊆
Z, for I, W, O ∈ N, and each neuron’s activation function maps the weighted sum to integer
values in {−O, . . . , O} ⊆ Z.

1. Not restrictive as it seems as, e.g., binarized NNs perform well;

2. trade-off between size and performance;

3. conversion is straight-forward.

Main impediment: non-linear functions
Applying the non-linear activation function after linear layer.
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Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of digit recognition.

7

Dataset: MNIST (60 000 images in training set + 10 000 in test set).
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Digit Recognition & Classification in the Cloud

We showcase a solution to the problem of blind digit recognition.

7

Dataset: MNIST (60 000 images in training set + 10 000 in test set).
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FHE–DiNN: Overview [BMMP18]
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FHE–DiNN: Input Image and 784:100:10–Neural Network

p1 p28

p784

1
p1

x1 = Enc(p1)

2
p2

x2 = Enc(p2)

3
p3

x3 = Enc(p3)

p784

x784 = Enc(p784)

...

784

1

1

2
2...

100

...
10

S0

S1

S9

x1

x2

...
...

w1
w2

yΣi
y = φ (∑i wi xi), y∈ [−O, . . . , O]

xi∈ [−I, . . . , I], and wi ∈ [−W, . . . W ].

Hidden Neuron (zoomed)

3. Experiments: Digit Classification with FHE–DiNN 12/16



FHE–DiNN: Algorithmic Overview [BMMP18]

Client Server

COOPER

Alice

TLWEN

Encpk
(∑

i piX
i
)

100 TLWEN

·
∑

i wiX
−i

100 N -LWE
Extract

100 n-LWE
KeySwitch

100 N -LWE
BootstrapToSign

10 N -LWE
Scores

10 scores
Decsk

7 argmax

3. Experiments: Digit Classification with FHE–DiNN 13/16



FHE–DiNN: Evaluation Formula of our 784:100:10–network
We assume a neural network trained on Dtrain = {(x(i), L(i))i}.
MFHE–DiNN models a weighted recomposition of a TLWE encryption c0;

TN [X]k −→ (TN [X]k)10

c0 7→ c⃗2 =
∑100

ℓ2=1

φ1

 784∑
ℓ1=1

(c0)ℓ1 · (ŵ0→1)ℓ1


︸ ︷︷ ︸

c⃗1


ℓ2

· (ŵ1→2)ℓ2 .

The homomorphic evaluation yields 10 samples −→cO as output, encrypting the perceptrons’
predicted label likelihoods of an encrypted input digit cI .
Label L = argmaxi (Decsk (−→cO))i is how the model sees the input’s
depicted digit:L =MFHE–DiNN (cI), with Decsk (cI) ≈ x(I) ∈ (Dtrain)x.

Main Result of the PhD-Thesis—Scalability
The analysis shows how to bootstrap the most expensive layer, then repeat for arbitrary
many hidden neurons arranged in various layers.
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FHE–DiNN Experiments: Practical Performance Neural Networks

Performance metrics on (clear) inputs x:
Original NN DiNN + hard_sigmoid DiNN + sign

FHE–DiNN 30 94.76% 93.76% (-1 %) 93.55% (-1.21%)

FHE–DiNN 100 96.75% 96.62% (-0.13%) 96.43% (-0.32%)

Performance metrics on (encrypted) inputs Encpk (x):
Acc. Disagreements Total wrong BS when dis. Time

30 93.71% 273 (105–121) 3 383/300 000 196/273 0.515 s

100 96.26% 127 (61–44) 9 088/1 000 000 105/127 1.679 s

30 w 93.46% 270 (119–110) 2 912/300 000 164/270 0.491 s

100 w 96.35 % 150 (66–58) 7 452/1 000 000 99/150 1.640 s

window size w = 2
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Performance Comparison with Microsoft Cryptonets [DGBL+16]

Overall Network per Image

nH Accuracy Eval [s] |c| [B] Enc [s] Dec [s]

Cryptonets 945 98.95 % 570 586 M 122 5

Cryptonets⋆ 945 98.95 % 0.07 73.3 k 0.015 0.000 6

FHE–DiNN30 30 93.71 % 0.49 ≈ 8.2 k 0.000 168 0.000 010 6

FHE–DiNN100 100 96.35 % 1.64 ≈ 8.2 k 0.000 168 0.000 010 6

Cryptonets⋆ is amortized per image (accumulating 8192 inferences)

Experimental Results
Timing/Image on Intel Core i7-4720HQ CPU @ 2.60GHz: 1.64 [sec].
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