The Subset-Sum Problem
 Alexander May ${ }^{1}$ Matthias Minihold ${ }^{1,2}$
 ${ }^{1}$ Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany ${ }^{2}$ ECRYPT-NET Early Stage Researcher

Motivation

Have you ever had a knapsack problem, i.e. when hiking or flying away? Informally the problem we try to solve is to pack a knapsack, too small to contain all items of a given set, with some of them, fulfilling a weight constraint. More formally, suppose you are at the airport:

- Your luggage may weight $S[\mathrm{~kg}]$ at check-in.
- Not squandering, your bag WILL weight exactly $S[\mathrm{~kg}]$.

The knapsack problem (also Subset-Sum problem) we want to solve:

$$
\begin{equation*}
\text { Given } n, S, a_{1}, a_{2}, \ldots a_{n} \in \mathbb{N} \text {, find } I \subseteq[n]: \sum_{i \in I} a_{i}=S \tag{1}
\end{equation*}
$$

Historical Remarks

This problem was first studied in 1897 and was one of the first proven to be $\mathcal{N} \mathcal{P}$-complete - worst-case instances are computationally intractable to tackle. The Subset-Sum problem appears on Karp's list of $21 \boldsymbol{\mathcal { N }} \mathcal{P}$-complete problems. Unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, one cannot hope for a polynomial time Subset-Sum solver.

Algorithmic Evolution

In the following table one can see how the expected time/space requirements of algorithms solving (1) in hard cases evolved as the techniques were refined.

Algorithm (year)

Exhaustive Search
Horowitz-Sahni (1974) Schröppel-Shamir (1979) Howgrave-Graham-Joux 'representations' (2010) Becker-Coron-Joux 'number-set' $\{-1,0,1\}(2011)$
Bernstein-Jeffery-Lange-Meurer

$$
\begin{gathered}
\text { Time } \\
2^{1.000 n} \approx(2.000)^{n} \\
2^{0.500 n} \approx(1.414)^{n} \\
2^{0.500 n} \approx(1.414)^{n} \\
2^{0.337 n} \approx(1.263)^{n} \\
2^{0.291 n} \approx(1.223)^{n} \\
2^{0.241 n} \approx(1.182)^{n}
\end{gathered}
$$

Space $2^{0.000 n} \approx(1.000)^{n}$ $2^{0.500 n} \approx(1.414)^{n}$ $2^{0.250 n} \approx(1.189)^{n}$ $2^{0.311 n} \approx(1.241)^{n}$
$2^{0.291 n} \approx(1.223)^{n}$
$2^{0.241 n} \approx(1.182)^{n}$

Table 1: Expected time and space requirements of algorithms solving equation (1).
The currently best algorithm is a quantum algorithm, a lower bound is unknown.

Technique 1 - Meet in the Middle

Hard instances of the Subset-Sum problem are characterized by relatively large elements $\left(\log _{2} a_{i} \approx n\right)$ and a balanced solution, i.e. $|I| \approx \frac{n}{2}$ in Equation (1). Identifying subsets of $[n]$ with length n vectors x over the 'number-set' $\{0,1\}$ via $i \in I \Leftrightarrow x[i]=1$ one constructs lists L_{1}, L_{2} of pairs merged to a solution in L_{0} :

Figure 1: Schröppel-Shamir: Combining disjoint sub-problems of smaller weight.
Algorithms based on the birthday-paradox construct collisions in the second component of the sub-problems in the lists L_{1}, L_{2} forcing any $x \in L_{0}$ to fulfill (1).

Technique 2-Enlarge Number Set

The idea in Howgrave-Graham-Joux (2010) and Becker-Coron-Joux (2011) was to allow multiple representations, which at the same time enlarges the number-set $x_{0}[i]=x_{1}[i]+x_{2}[i] \notin\{0,1\}$.
Although introducing a non-trivial filtering step to remove 'inconsistent solutions' when merging L_{1} and L_{2}, overall speed-ups were achieved for $x_{0}[i] \in\{-1,0,1\}$.

$$
\begin{gathered}
\hline L_{0} \hat{=}\left\{\left(x_{0}, \sum_{i} x_{0}[i] a_{i}=S_{1}+S_{2}=S\right)\right\}, w t\left(x_{0}\right)=\frac{n}{2} \\
= \\
\hline L_{1} \hat{=}\left\{\left(x_{1}, \sum_{i} x_{1}[i] a_{i}\right)\right\}, w t\left(x_{1}\right)=\frac{n}{4} \\
+ \\
\hline L_{2} \hat{=}\left\{\left(x_{2}, S-\sum_{i} x_{2}[i] a_{i}\right)\right\}, w t\left(x_{2}\right)=\frac{n}{4} \\
\hline
\end{gathered}
$$

Figure 2: Becker-Coron-Joux: Adding length n solutions of sub-problems increases the number-set.

Our Approach: Gaussian Sampling

The techniques reviewed above are:

- tricky to analyze,
- somewhat hard to generalize,
- produce exponentially many inconsistent solutions,
- thus require a non-negligible amount of intermediate filtering.

Instead of approaching an instance of Subset-Sum with combinatorial methods or quantum algorithms, we want to solve (1) with a classical algorithm using
probabilistic tools. Gaussian sampling is a possible approach to overcome the combinatoric ad-hoc analysis while allowing any number-set in theory.
The figure shows how sampling from a Gaussian distribution, $x[i]=X \sim \mathcal{N}\left(\mu=\frac{1}{2}, \sigma=\frac{8}{10}\right)$, naturally leads to a number-set exceeding $\{0,1\}$. This happens

Figure 3: Histogram of samples $X \sim \mathcal{N}\left(\mu=\frac{1}{2}, \sigma=\frac{8}{10}\right)$.
We strive for algorithmic speed-ups by relaxing the constrained number-set, thus accepting components $x[i]$ with a certain probability $P[x[i] \notin\{0,1\}]$ while ultimately ensuring a valid solution of Equation (1).

Applications

The cryptanalytic methods for structurally approaching the Subset-Sum problem are valuable algorithmic meta-techniques also applicable to other $\mathcal{N} \mathcal{P}$-complete problems like lattice- or code-based problems.

Acknowledgements

This project has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 643161.
hgi
Horst Görtz Institute

