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Motivation

Have you ever had a knapsack problem, i.e. when hiking or flying away?
Informally the problem we try to solve is to pack a knapsack, too small to con-
tain all items of a given set, with some of them, fulfilling a weight constraint.
More formally, suppose you are at the airport:

•Your luggage may weight S [kg] at check-in.
•Not squandering, your bag WILL weight exactly S [kg].
•You own n equally beautiful items of weight a1, a2, . . . an.

The knapsack problem (also Subset-Sum problem) we want to solve:
Given n, S, a1, a2, . . . an ∈ N, find I ⊆ [n] :

∑

i∈I
ai = S. (1)

Historical Remarks

This problem was first studied in 1897 and was one of the first proven to be
NP-complete – worst-case instances are computationally intractable to tackle.
The Subset-Sum problem appears on Karp’s list of 21 NP-complete problems.
Unless P = NP , one cannot hope for a polynomial time Subset-Sum solver.

Algorithmic Evolution

In the following table one can see how the expected time/space requirements of
algorithms solving (1) in hard cases evolved as the techniques were refined.

Algorithm (year) Time Space
Exhaustive Search 21.000n ≈ (2.000)n 20.000n ≈ (1.000)n
Horowitz-Sahni (1974) 20.500n ≈ (1.414)n 20.500n ≈ (1.414)n
Schröppel-Shamir (1979) 20.500n ≈ (1.414)n 20.250n ≈ (1.189)n
Howgrave-Graham-Joux
’representations’ (2010)

20.337n ≈ (1.263)n 20.311n ≈ (1.241)n

Becker-Coron-Joux ’number-set’
{−1, 0, 1} (2011)

20.291n ≈ (1.223)n 20.291n ≈ (1.223)n

Bernstein-Jeffery-Lange-Meurer
’quantum algorithm’ (2013)

20.241n ≈ (1.182)n 20.241n ≈ (1.182)n

Table 1: Expected time and space requirements of algorithms solving equation (1).

The currently best algorithm is a quantum algorithm, a lower bound is unknown.

Technique 1 - Meet in the Middle

Hard instances of the Subset-Sum problem are characterized by relatively large
elements (log2 ai ≈ n) and a balanced solution, i.e. |I| ≈ n

2 in Equation (1).
Identifying subsets of [n] with length n vectors x over the ’number-set’ {0, 1} via
i ∈ I ⇔ x[i] = 1 one constructs lists L1, L2 of pairs merged to a solution in L0:
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Figure 1: Schröppel-Shamir: Combining disjoint sub-problems of smaller weight.

Algorithms based on the birthday-paradox construct collisions in the second com-
ponent of the sub-problems in the lists L1, L2 forcing any x ∈ L0 to fulfill (1).

Technique 2 - Enlarge Number Set

The idea in Howgrave-Graham-Joux (2010) and Becker-Coron-Joux (2011) was
to allow multiple representations, which at the same time enlarges the number-set

x0[i] = x1[i] + x2[i] 6∈ {0, 1}.
Although introducing a non-trivial filtering step to remove ’inconsistent solutions’
when merging L1 and L2, overall speed-ups were achieved for x0[i] ∈ {−1, 0, 1}.
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∑
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n
4

Figure 2: Becker-Coron-Joux: Adding length n solutions of sub-problems increases the number-set.

Our Approach: Gaussian Sampling

The techniques reviewed above are:
• tricky to analyze,
• somewhat hard to generalize,
•produce exponentially many inconsistent solutions,
• thus require a non-negligible amount of intermediate filtering.
Instead of approaching an instance of Subset-Sum with combinatorial methods
or quantum algorithms, we want to solve (1) with a classical algorithm using

probabilistic tools. Gaussian
sampling is a possible approach
to overcome the combinatoric
ad-hoc analysis while allowing
any number-set in theory.
The figure shows how sampling
from a Gaussian distribution,
x[i] = X ∼ N (µ = 1

2, σ = 8
10),

naturally leads to a number-set
exceeding {0, 1}. This happens
with a certain probability.
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Figure 3: Histogram of samples X ∼ N (µ = 1
2, σ = 8

10).

We strive for algorithmic speed-ups by relaxing the constrained number-set, thus
accepting components x[i] with a certain probability P [x[i] 6∈ {0, 1}] while ulti-
mately ensuring a valid solution of Equation (1).

Applications

The cryptanalytic methods for structurally approaching the Subset-Sum problem
are valuable algorithmic meta-techniques also applicable to otherNP-complete
problems like lattice- or code-based problems.
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