Linear Codes and Applications in Cryptography

Matthias Minihold matthias.minihold@gmx.at

Vortrag an der Ruhr-Universität Bochum

am 17. September 2015

Chapters

Linear Codes

2 / 48

Chapters

- Linear Codes
- Oryptography

Chapters

- Linear Codes
- Oryptography
- Second Second

Chapters

- Linear Codes
- Oryptography
- Second Second
- Quantum Computing

Figure : A mind map visualizing the topics in this thesis.

We define Goppa codes over a general alphabet \mathbb{F}_q and present decoding advantages in the binary case, because of Patterson's algorithm and the larger minimum distance between codewords.

We define Goppa codes over a general alphabet \mathbb{F}_q and present decoding advantages in the binary case, because of Patterson's algorithm and the larger minimum distance between codewords.

Definition

Let $G(z) \in \mathbb{F}_{q^m}[z]$ be a Goppa polynomial of degree $t := \deg G(z)$ and the support $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq \mathbb{F}_{q^m}$, such that $G(\alpha) \neq 0$, for all $\alpha \in L$. The Goppa code $\Gamma(L, G)$ is defined by:

$$\Gamma(L,G) := \bigg\{ c \in \mathbb{F}_q^n \mid \sum_{i=1}^n \frac{c_i}{z - \alpha_i} \equiv 0 \mod G(z) \bigg\}.$$

Theorem

Let $G(z) = \sum_{i=0}^{t} g_i z^i$ with $g_i \in \mathbb{F}_{q^m}, g_t \neq 0$ be the Goppa polynomial and let the support be $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}.$

Theorem

Let $G(z) = \sum_{i=0}^{t} g_i z^i$ with $g_i \in \mathbb{F}_{q^m}, g_t \neq 0$ be the Goppa polynomial and let the support be $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \ge n - mt, d \ge t + 1]$ over \mathbb{F}_q .

Theorem

Let $G(z) = \sum_{i=0}^{t} g_i z^i$ with $g_i \in \mathbb{F}_{q^m}, g_t \neq 0$ be the Goppa polynomial and let the support be $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \ge n - mt, d \ge t + 1]$ over \mathbb{F}_q .

Theorem

Given a Goppa polynomial G(z) over \mathbb{F}_2 of degree $t := \deg G(z)$.

Theorem

Let $G(z) = \sum_{i=0}^{t} g_i z^i$ with $g_i \in \mathbb{F}_{q^m}, g_t \neq 0$ be the Goppa polynomial and let the support be $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \ge n - mt, d \ge t + 1]$ over \mathbb{F}_q .

Theorem

Given a Goppa polynomial G(z) over \mathbb{F}_2 of degree $t := \deg G(z)$.

- If G has no multiple zeros and
- the lowest degree perfect square G

 G(z) that is divisible by G(z)
 is G
 G(z) = G(z)²
 ,

Theorem

Let $G(z) = \sum_{i=0}^{t} g_i z^i$ with $g_i \in \mathbb{F}_{q^m}, g_t \neq 0$ be the Goppa polynomial and let the support be $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \ge n - mt, d \ge t + 1]$ over \mathbb{F}_q .

Theorem

Given a Goppa polynomial G(z) over \mathbb{F}_2 of degree $t := \deg G(z)$.

- If G has no multiple zeros and
- the lowest degree perfect square G

 G(z) that is divisible by G(z)
 is G
 G(z) = G(z)²
 ,

then the Goppa code $\Gamma(L, G)$ has minimum distance $d \ge 2t + 1$.

Cryptography: McEliece PKS

14 / 48

Algorithm 1: McEliece key generation

Input : $(k \times n)$ generator matrix G, error correcting capability t**Output**: public key (G', t), private key (S, G, P)

Choose a $(n \times n)$ permutation matrix P Choose a regular binary $(k \times k)$ -matrix S Compute $(k \times n)$ matrix G' = SGP

Algorithm 2: McEliece encryption

Input : message m, public key (G', t) and thus implicitly n, k**Output**: encrypted message c

Compute c' = mG'Randomly generate a vector $z \in \mathbb{F}_q^n$, with non-zero entries at $\leq t$ positions Compute c = c' + z, the cipher text block Algorithm 3: McEliece decryption

Input : encrypted message block c, private key (S, G, P)**Output**: message m

Compute $\overline{c} = cP^{-1}$ The decoding algorithm of the code C corrects t errors. $\overline{c} \to \overline{m}$. Compute $m = \overline{m}S^{-1}$, the clear text message block. // Precompute the matrices P^{-1} and S^{-1} once.

Example of code-based PKS: n = 8, m = 3, q = 2.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree t = 2 Goppa polynomial $G(z) = z^2 + z + 1$ and the support $L = \{0, 1, \beta, \beta^2, \beta + 1, \beta^2 + \beta, \beta^2 + \beta + 1, \beta^2 + 1\}$ yield an $[n = 8, k = 8 - 2 \cdot 3, d = 2 \cdot 2 + 1]$ -code $\Gamma(L, G) \leq \mathbb{F}_2^8$.

Example of code-based PKS: n = 8, m = 3, q = 2.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree t = 2 Goppa polynomial $G(z) = z^2 + z + 1$ and the support $L = \{0, 1, \beta, \beta^2, \beta + 1, \beta^2 + \beta, \beta^2 + \beta + 1, \beta^2 + 1\}$ yield an $[n = 8, k = 8 - 2 \cdot 3, d = 2 \cdot 2 + 1]$ -code $\Gamma(L, G) \leq \mathbb{F}_2^8$.

$$G_{Goppa} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix},$$

$$H_{Goppa} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$
RUHR RUE

Example of code-based PKS: n = 8, m = 3, q = 2.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree t = 2 Goppa polynomial $G(z) = z^2 + z + 1$ and the support $L = \{0, 1, \beta, \beta^2, \beta + 1, \beta^2 + \beta, \beta^2 + \beta + 1, \beta^2 + 1\}$ yield an $[n = 8, k = 8 - 2 \cdot 3, d = 2 \cdot 2 + 1]$ -code $\Gamma(L, G) \leq \mathbb{F}_2^8$.

$$G_{Goppa} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix},$$

$$H_{Goppa} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix},$$

$$RUHR_{MINERSITAT}$$
RUE

McEliece PKS

$$S \cdot G_{Goppa} \cdot P = G_{pub} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

20 / 48

McEliece PKS

$$S \cdot G_{Goppa} \cdot P = G_{pub} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Example (McEliece)

Alice generates:
$$u = (0, 1)$$

Alice sends: $y = (1, 0, 0, 0, 1, 1, 1, 0)$

McEliece PKS

$$S \cdot G_{Goppa} \cdot P = G_{pub} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Example (McEliece)

Alice generates: u = (0, 1)Alice sends: y = (1, 0, 0, 0, 1, 1, 1, 0)Bob receives: y = (1, 0, 0, 0, 1, 1, 1, 0) $y*P^{-1}: yP = (0, 0, 1, 0, 0, 1, 1, 1)$ Bob decodes yD: yD = (0, 0, 1, 1, 1, 1, 1, 1)scrambled information bits mm: (0, 1)mm*S^{-1}: yS = (0, 1) The decryption was successful!

Niederreiter PKS

$$M \cdot H_{Goppa} \cdot P = H_{pub} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

.

Niederreiter PKS

$$M \cdot H_{Goppa} \cdot P = H_{pub} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Example (Niederreiter)

Alice generates: u = (0, 0, 1, 0, 0, 0, 0, 1)Alice sends: y = (0, 1, 1, 1, 1, 1)

Niederreiter PKS

$$M \cdot H_{Goppa} \cdot P = H_{pub} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Example (Niederreiter)

Alice generates:
$$u = (0, 0, 1, 0, 0, 0, 0, 1)$$

Alice sends: $y = (0, 1, 1, 1, 1, 1)$
Bob receives: $y = (0, 1, 1, 1, 1, 1)$
 $M^{-1}*y: yM = (0, 1, 1, 1, 0, 0)$
Bob decodes xD: $xD = (1, 0, 0, 0, 0, 1, 0, 0)$
 $P^{-1}*xD: xS = (0, 0, 1, 0, 0, 0, 0, 1)$
The decryption was successful

.

Quantum computing

Definition

In general, a qubit is in the state: $|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle, \quad |a_0|^2 + |a_1|^2 = 1.$

Quantum computing

Definition

In general, a qubit is in the state: $|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle, \quad |a_0|^2 + |a_1|^2 = 1.$

• Classical computer: 1 processor can be used repeating some calculation $\mathcal{O}(2^n)$ times to perform one gate operation on each of the 2^n values representable by *n* bits.

Quantum computing

Definition

In general, a qubit is in the state: $|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle, \quad |a_0|^2 + |a_1|^2 = 1.$

- Classical computer: 1 processor can be used repeating some calculation $\mathcal{O}(2^n)$ times to perform one gate operation on each of the 2^n values representable by *n* bits.
- Quantum computer: 2ⁿ values are representable using n qubits. A quantum gate applied to these n qubit takes O(n) time.

Assumption classically

False, quantum mechanically

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.
A bit can be copied without	Copying necessarily changes a
affecting its value.	qubit's quantum state.

Assumption classically	False, quantum mechanically
A bit has a definite value. A bit can only be 0 or 1. A bit can be copied without affecting its value. A bit can be read without af-	A qubit after it is read. Superposition of 0 and 1. Copying necessarily changes a qubit's quantum state. Reading a qubit in a superpo-
fecting its value.	sition will change it.

Assumption classically	False, quantum mechanically
Assumption classically A bit has a definite value. A bit can only be 0 or 1. A bit can be copied without affecting its value. A bit can be read without af- fecting its value.	A qubit after it is read. Superposition of 0 and 1. Copying necessarily changes a qubit's quantum state. Reading a qubit in a superpo- sition will change it.
Reading one bit has no affect on any other (unread) bit.	Entangled qubits: reading one qubit will affect the other.

Table : Assumptions about bits that are not true at the quantum scale.

Post-quantum cryptography: PKS

35 / 48

Post-quantum cryptography: PKS

• The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$\mathcal{O}\left(e^{(C+o(1))n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text{Shor}} \mathcal{O}(n^3).$$

• The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$\mathcal{O}\left(e^{(C+o(1))n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text{Shor}} \mathcal{O}(n^3).$$

• The discrete logarithm problem on elliptic curves (ECDLP) is affected, too — with an exponential speedup, where *N* denotes the number of points on the elliptic curve:

$$\mathcal{O}(\sqrt{N}) = \mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text{Shor}} \mathcal{O}((\log N)^3).$$

• The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$\mathcal{O}\left(e^{(C+o(1))n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text{Shor}} \mathcal{O}(n^3).$$

• The discrete logarithm problem on elliptic curves (ECDLP) is affected, too — with an exponential speedup, where *N* denotes the number of points on the elliptic curve:

$$\mathcal{O}(\sqrt{N}) = \mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text{Shor}} \mathcal{O}((\log N)^3).$$

• McEliece and Niederreiter PKS are still unbroken, if based on binary Goppa codes.

• The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$\mathcal{O}\left(e^{(C+o(1))n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text{Shor}} \mathcal{O}(n^3).$$

• The discrete logarithm problem on elliptic curves (ECDLP) is affected, too — with an exponential speedup, where *N* denotes the number of points on the elliptic curve:

$$\mathcal{O}(\sqrt{N}) = \mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text{Shor}} \mathcal{O}((\log N)^3).$$

 McEliece and Niederreiter PKS are still unbroken, if based on binary Goppa codes. Generalizations of all known attacks seem unfeasible.

Review - 2 years later

Noteworthy remarks on the thesis after review

• Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography.

• Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic.

Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared — all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.

Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared — all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.
 I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.
 I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.
- Generating Chapter 3 from .tex source computes the examples on the fly with random input (by calling Sage) and checks validity displaying "True" (or "False") within the text!

RSITÄT

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.
 I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.
- Generating Chapter 3 from .tex source computes the examples on the fly with random input (by calling Sage) and checks validity displaying "True" (or "False") within the text! Thus I had trust in my implementation.

Thank you for your attention!

47 / 48

Thank you for your attention!

Matthias Minihold, Master's Thesis (2013) Linear Codes and Applications in Cryptography. Vienna University of Technology.

48 / 48