Linear Codes and Applications in Cryptography

Matthias Minihold
matthias.minihold@gmx.at

Vortrag an der Ruhr-Universität Bochum
am 17. September 2015

Overview

Chapters
(1) Linear Codes

Overview

Chapters
(1) Linear Codes
(2) Cryptography

Overview

Chapters
(1) Linear Codes
(2) Cryptography
(3) Example of PKS based on Goppa Codes using Sage

Overview

Chapters
(1) Linear Codes
(2) Cryptography
(3) Example of PKS based on Goppa Codes using Sage
(1) Quantum Computing

Figure: A mind map visualizing the topics in this thesis.

Linear Codes: Goppa Codes

We define Goppa codes over a general alphabet \mathbb{F}_{q} and present decoding advantages in the binary case, because of Patterson's algorithm and the larger minimum distance between codewords.

Linear Codes: Goppa Codes

We define Goppa codes over a general alphabet \mathbb{F}_{q} and present decoding advantages in the binary case, because of Patterson's algorithm and the larger minimum distance between codewords.

Definition

Let $G(z) \in \mathbb{F}_{q^{m}}[z]$ be a Goppa polynomial of degree $t:=\operatorname{deg} G(z)$ and the support $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subseteq \mathbb{F}_{q^{m}}$, such that $G(\alpha) \neq 0$, for all $\alpha \in L$. The Goppa code $\Gamma(L, G)$ is defined by:

$$
\Gamma(L, G):=\left\{c \in \mathbb{F}_{q}^{n} \left\lvert\, \sum_{i=1}^{n} \frac{c_{i}}{z-\alpha_{i}} \equiv 0 \bmod G(z)\right.\right\} .
$$

RUB

Linear Codes: Goppa Codes

Theorem

Let $G(z)=\sum_{i=0}^{t} g_{i} z^{i}$ with $g_{i} \in \mathbb{F}_{q^{m}}, g_{t} \neq 0$ be the Goppa polynomial and let the support be $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$.

Linear Codes: Goppa Codes

Theorem

Let $G(z)=\sum_{i=0}^{t} g_{i} z^{i}$ with $g_{i} \in \mathbb{F}_{q^{m}}, g_{t} \neq 0$ be the Goppa polynomial and let the support be $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \geq n-m t, d \geq t+1]$ over \mathbb{F}_{q}.

Linear Codes: Goppa Codes

Theorem

Let $G(z)=\sum_{i=0}^{t} g_{i} z^{i}$ with $g_{i} \in \mathbb{F}_{q^{m}}, g_{t} \neq 0$ be the Goppa polynomial and let the support be $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$.
Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \geq n-m t, d \geq t+1]$ over \mathbb{F}_{q}.

Theorem

Given a Goppa polynomial $G(z)$ over \mathbb{F}_{2} of degree $t:=\operatorname{deg} G(z)$.

Linear Codes: Goppa Codes

Theorem

Let $G(z)=\sum_{i=0}^{t} g_{i} z^{i}$ with $g_{i} \in \mathbb{F}_{q^{m}}, g_{t} \neq 0$ be the Goppa polynomial and let the support be $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \geq n-m t, d \geq t+1]$ over \mathbb{F}_{q}.

Theorem

Given a Goppa polynomial $G(z)$ over \mathbb{F}_{2} of degree $t:=\operatorname{deg} G(z)$.

- If G has no multiple zeros and
- the lowest degree perfect square $\bar{G}(z)$ that is divisible by $G(z)$ is $\bar{G}(z)=G(z)^{2}$,

Linear Codes: Goppa Codes

Theorem

Let $G(z)=\sum_{i=0}^{t} g_{i} z^{i}$ with $g_{i} \in \mathbb{F}_{q^{m}}, g_{t} \neq 0$ be the Goppa polynomial and let the support be $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$.
Then the resulting Goppa code $\Gamma(L, G)$ is a linear code with parameters $[n, k \geq n-m t, d \geq t+1]$ over \mathbb{F}_{q}.

Theorem

Given a Goppa polynomial $G(z)$ over \mathbb{F}_{2} of degree $t:=\operatorname{deg} G(z)$.

- If G has no multiple zeros and
- the lowest degree perfect square $\bar{G}(z)$ that is divisible by $G(z)$ is $\bar{G}(z)=G(z)^{2}$,
then the Goppa code $\Gamma(L, G)$ has minimum distance $d \geq 2 t+1$.

Cryptography: McEliece PKS

Cryptography: McEliece PKS

Algorithm 1: McEliece key generation
Input : $(k \times n)$ generator matrix G, error correcting capability t
Output: public key $\left(G^{\prime}, t\right)$, private key (S, G, P)
Choose a $(n \times n)$ permutation matrix P
Choose a regular binary $(k \times k)$-matrix S
Compute $(k \times n)$ matrix $G^{\prime}=S G P$
Algorithm 2: McEliece encryption
Input : message m, public key $\left(G^{\prime}, t\right)$ and thus implicitly n, k
Output: encrypted message c
Compute $c^{\prime}=m G^{\prime}$
Randomly generate a vector $z \in \mathbb{F}_{q}^{n}$,
with non-zero entries at $\leq t$ positions
Compute $c=c^{\prime}+z$, the cipher text block

Cryptography: McEliece PKS

[^0]
Example of code-based PKS: $n=8, m=3, q=2$.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree $t=2$ Goppa polynomial $G(z)=z^{2}+z+1$ and the support $L=\left\{0,1, \beta, \beta^{2}, \beta+1, \beta^{2}+\beta, \beta^{2}+\beta+1, \beta^{2}+1\right\}$ yield an $[n=8, k=8-2 \cdot 3, d=2 \cdot 2+1]-\operatorname{code} \Gamma(L, G) \leq \mathbb{F}_{2}^{8}$.

Example of code-based PKS: $n=8, m=3, q=2$.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree $t=2$ Goppa polynomial $G(z)=z^{2}+z+1$ and the support $L=\left\{0,1, \beta, \beta^{2}, \beta+1, \beta^{2}+\beta, \beta^{2}+\beta+1, \beta^{2}+1\right\}$ yield an $[n=8, k=8-2 \cdot 3, d=2 \cdot 2+1]-\operatorname{code} \Gamma(L, G) \leq \mathbb{F}_{2}^{8}$.

$$
\begin{aligned}
G_{G o p p a} & =\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right), \\
H_{\text {Goppa }} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

RUB

Example of code-based PKS: $n=8, m=3, q=2$.

Example (Binary Goppa code $\Gamma(L, G)$)

The degree $t=2$ Goppa polynomial $G(z)=z^{2}+z+1$ and the support $L=\left\{0,1, \beta, \beta^{2}, \beta+1, \beta^{2}+\beta, \beta^{2}+\beta+1, \beta^{2}+1\right\}$ yield an $[n=8, k=8-2 \cdot 3, d=2 \cdot 2+1]-\operatorname{code} \Gamma(L, G) \leq \mathbb{F}_{2}^{8}$.

$$
\begin{aligned}
G_{G o p p a} & =\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right), \\
H_{G o p p a} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

McEliece PKS

$$
S \cdot G_{G o p p a} \cdot P=G_{p u b}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

McEliece PKS

$S \cdot G_{G o p p a} \cdot P=G_{p u b}=\left(\begin{array}{cccccccc}0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right)$.
Example (McEliece)
Alice generates: $u=(0,1)$
Alice sends: $y=(1,0,0,0,1,1,1,0)$

McEliece PKS

$S \cdot G_{G o p p a} \cdot P=G_{p u b}=\left(\begin{array}{cccccccc}0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right)$.

Example (McEliece)

Alice generates: $u=(0,1)$
Alice sends: $y=(1,0,0,0,1,1,1,0)$
Bob receives: $y=(1,0,0,0,1,1,1,0)$
$\mathrm{y} * \mathrm{P} \wedge\{-1\}: y P=(0,0,1,0,0,1,1,1)$
Bob decodes yD: yD $=(0,0,1,1,1,1,1,1)$
scrambled information bits $\mathrm{mm}:(0,1)$
$m m * S^{\wedge}\{-1\}: y S=(0,1)$ The decryption was successful!

Niederreiter PKS

$$
M \cdot H_{G o p p a} \cdot P=H_{p u b}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Niederreiter PKS

$$
M \cdot H_{G o p p a} \cdot P=H_{p u b}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

Example (Niederreiter)

Alice generates: $u=(0,0,1,0,0,0,0,1)$
Alice sends: $\quad y=(0,1,1,1,1,1)$

Niederreiter PKS

$$
M \cdot H_{G o p p a} \cdot P=H_{p u b}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Example (Niederreiter)

Alice generates: $u=(0,0,1,0,0,0,0,1)$
Alice sends: $\quad y=(0,1,1,1,1,1)$
Bob receives: $y=(0,1,1,1,1,1)$
M~ $\{-1\} * y: y M=(0,1,1,1,0,0)$
Bob decodes xD: $x D=(1,0,0,0,0,1,0,0)$
$\mathrm{P}^{\wedge}\{-1\} * x D: x S=(0,0,1,0,0,0,0,1)$
The decryption was successful

Quantum computing

Definition

In general, a qubit is in the state:
$|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle, \quad\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1$.

Quantum computing

Definition

In general, a qubit is in the state:

$$
|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle, \quad\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1 .
$$

- Classical computer: 1 processor can be used repeating some calculation $\mathcal{O}\left(2^{n}\right)$ times to perform one gate operation on each of the 2^{n} values representable by n bits.

RUB

Quantum computing

Definition

In general, a qubit is in the state:

$$
|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle, \quad\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1 .
$$

- Classical computer: 1 processor can be used repeating some calculation $\mathcal{O}\left(2^{n}\right)$ times to perform one gate operation on each of the 2^{n} values representable by n bits.
- Quantum computer: 2^{n} values are representable using n qubits. A quantum gate applied to these n qubit takes $\mathcal{O}(n)$ time.

Quantum computing: Assumptions

Assumption classically
False, quantum mechanically

Quantum computing: Assumptions

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.

Quantum computing: Assumptions

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.

Quantum computing: Assumptions

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.
A bit can be copied without	Copying necessarily changes a affecting its value.
qubit's quantum state.	

Quantum computing: Assumptions

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.
A bit can be copied without	Copying necessarily changes a affecting its value.
A bit can be read without af- Readintum state. fecting its value.	sition will change it.

Quantum computing: Assumptions

Assumption classically	False, quantum mechanically
A bit has a definite value.	A qubit after it is read.
A bit can only be 0 or 1.	Superposition of 0 and 1.
A bit can be copied without	Copying necessarily changes a affecting its value.
qubit's quantum state.	
fecting its value.	Reading a qubit in a superpo- sition will change it. Reading one bit has no affect
Entangled qubits: reading	
on any other (unread) bit.	one qubit will affect the other.

Table: Assumptions about bits that are not true at the quantum scale.

Post-quantum cryptography: PKS

Post-quantum cryptography: PKS

- The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$
\mathcal{O}\left(e^{\left.(C+o(1)) n^{\frac{1}{3}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left(n^{3}\right)}\right.
$$

Post-quantum cryptography: PKS

- The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$
\mathcal{O}\left(e^{\left.(C+o(1)) n^{\frac{1}{3}(\log n)^{\frac{2}{3}}}\right)} \xrightarrow{\text { Shor }} \mathcal{O}\left(n^{3}\right) .\right.
$$

- The discrete logarithm problem on elliptic curves (ECDLP) is affected, too - with an exponential speedup, where N denotes the number of points on the elliptic curve:

$$
\mathcal{O}(\sqrt{N})=\mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left((\log N)^{3}\right)
$$

Post-quantum cryptography: PKS

- The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$
\mathcal{O}\left(e^{\left.(C+o(1)) n^{\frac{1}{3}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left(n^{3}\right)}\right.
$$

- The discrete logarithm problem on elliptic curves (ECDLP) is affected, too - with an exponential speedup, where N denotes the number of points on the elliptic curve:

$$
\mathcal{O}(\sqrt{N})=\mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left((\log N)^{3}\right) .
$$

- McEliece and Niederreiter PKS are still unbroken, if based on binary Goppa codes.

Post-quantum cryptography: PKS

- The speedup thanks to Shor's quantum algorithm over the best known classical algorithm for Factorization problem is:

$$
\mathcal{O}\left(e^{\left.(C+o(1)) n^{\frac{1}{3}(\log n)^{\frac{2}{3}}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left(n^{3}\right)}\right.
$$

- The discrete logarithm problem on elliptic curves (ECDLP) is affected, too - with an exponential speedup, where N denotes the number of points on the elliptic curve:

$$
\mathcal{O}(\sqrt{N})=\mathcal{O}\left(e^{\frac{\log N}{2}}\right) \xrightarrow{\text { Shor }} \mathcal{O}\left((\log N)^{3}\right) .
$$

- McEliece and Niederreiter PKS are still unbroken, if based on binary Goppa codes. Generalizations of all known attacks seem unfeasible.

Review - 2 years later

Noteworthy remarks on the thesis after review

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography.

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic.

BOCHUM
RUB

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared - all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic. During implementation one "bleak spot" in the literature appeared - all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit. I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic.
During implementation one "bleak spot" in the literature appeared - all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.
I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.
- Generating Chapter 3 from .tex source computes the examples on the fly with random input (by calling Sage) and checks validity displaying "True" (or "False") within the text!

Review - 2 years later

Noteworthy remarks on the thesis after review

- Objective of this thesis was the combination of multiple scientific fields to a consistent text about uses of linear codes in cryptography. I chose and suggested the topic.
During implementation one "bleak spot" in the literature appeared - all 7 sources didn't make the maths behind one step in Patterson's Decoding Algorithm explicit.
I filled this "hole" for decoding Binary Goppa Codes and proved, implemented and demonstrated the functionality.
- Generating Chapter 3 from .tex source computes the examples on the fly with random input (by calling Sage) and checks validity displaying "True" (or "False") within the text! Thus I had trust in my implementation.

References

Thank you for your attention!

References

Thank you for your attention!

Matthias Minihold, Master's Thesis (2013)Linear Codes and Applications in Cryptography.
Vienna University of Technology.

[^0]: Algorithm 3: McEliece decryption
 Input : encrypted message block c, private key (S, G, P)
 Output: message m
 Compute $\bar{c}=c P^{-1}$
 The decoding algorithm of the code C corrects t errors. $\bar{c} \rightarrow \bar{m}$.
 Compute $m=\bar{m} S^{-1}$, the clear text message block.
 // Precompute the matrices P^{-1} and S^{-1} once.

